Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of Graphene Quantum Dots
2.3. Characterization of Graphene Quantum Dots
2.3.1. Morphology Analysis of GQDs: Atomic Force Microscopy and Transmission Electron Microscopy
2.3.2. Structural Analyses: Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS)
2.3.3. UV/Vis Spectroscopy
2.3.4. Photoluminescence (PL) Spectroscopy
2.3.5. Electron Paramagnetic Resonance (EPR) Spectroscopy
2.3.6. Photo-Induced Antibacterial Activity
3. Results and Discussion
Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, S. Graphene Quantum Dots—A New Member of the Graphene Family: Structure, Properties, and Biomedical Applications. In Handbook of Graphene Set, I–VIII.; Edvige Celasco, A.N.C., Stauber, T., Zhang, M., Ozkan, C., Ozkan, U., Palys, B., Harun, S.W., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 267–299. [Google Scholar]
- Jang, M.-H.; Yang, H.; Chang, Y.H.; Park, H.-C.; Park, H.; Cho, H.H.; Kim, B.J.; Kim, Y.-H.; Cho, Y.-H. Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dots. Nanoscale 2017, 9, 18635–18643. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kong, W.; Wang, L.; Zhang, J.Z.; Li, Y.; Liu, X.; Li, Y. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Phys. Chem. Chem. Phys. 2019, 21, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Xue, Y. Edge-oxidation induced non-radiative recombination dynamics in graphene quantum dots: A theoretical insight from Fermi’s golden rule. Mol. Phys. 2022, 120, e2025465. [Google Scholar] [CrossRef]
- Feng, J.; Dong, H.; Yu, L.; Dong, L. The optical and electronic properties of graphene quantum dots with oxygen-containing groups: A density functional theory study. J. Mater. Chem. C 2017, 5, 5984–5993. [Google Scholar] [CrossRef]
- Rabeya, R.; Mahalingam, S.; Manap, A.; Satgunam, M.; Akhtaruzzaman, M.; Chia, C.H. Structural defects in graphene quantum dots: A review. Quantum Chem. 2022, 122, e26900. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, W.; Via, B.K. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids Surf. B Biointerfaces 2014, 118, 72–76. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 2012, 48, 10177–10179. [Google Scholar] [CrossRef]
- Tabish, T.A.; Scotton, C.J.; Ferguson, D.C.J.; Lin, L.; der Veen, A.V.; Lowry, S.; Ali, M.; Jabeen, F.; Ali, M.; Winyard, P.G.; et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 2018, 13, 1923–1937. [Google Scholar] [CrossRef]
- Halder, A.; Godoy-Gallardo, M.; Ashley, J.; Feng, X.; Zhou, T.; Hosta-Rigau, L.; Sun, Y. One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl. Bio Mater. 2018, 1, 452–461. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10–14. [Google Scholar] [CrossRef]
- Li, S.-Y.; He, L. Recent progresses of quantum confinement in graphene quantum dots. Front. Phys. 2021, 17, 33201. [Google Scholar] [CrossRef]
- Biswas, M.C.; Islam, M.T.; Nandy, P.K.; Hossain, M.M. Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. ACS Mater. Lett. 2021, 3, 889–911. [Google Scholar] [CrossRef]
- Tan, X.; Li, Y.; Li, X.; Zhou, S.; Fan, L.; Yang, S. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 2015, 51, 2544–2546. [Google Scholar] [CrossRef]
- Marković, Z.M.; Labudová, M.; Danko, M.; Matijašević, D.; Mičušík, M.; Nádaždy, V.; Kováčová, M.; Kleinová, A.; Špitalský, Z.; Pavlović, V.; et al. Highly efficient antioxidant F- And Cl-doped carbon quantum dots for bioimaging. ACS Sustain. Chem. Eng. 2020, 8, 16327–16338. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, N.; Hao, Z.; Maharjan, S.; Zhao, X.; Song, Y.; Sun, B.; Zhang, K.; Zhang, J.; Sun, H.; et al. Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Adv. 2015, 5, 39399–39403. [Google Scholar] [CrossRef]
- Dorontić, S.; Jovanović, S.; Bonasera, A. Shedding light on graphene quantum dots: Key synthetic strategies, characterization tools, and cutting-edge applications. Materials 2021, 14, 6153. [Google Scholar] [CrossRef]
- Kuo, W.S.; Yeh, T.S.; Chang, C.Y.; Liu, J.C.; Chen, C.H.; So, E.C.; Wu, P.C. Amino-functionalized nitrogen-doped graphene quantum dots for efficient enhancement of two-photon-excitation photodynamic therapy: Functionalized nitrogen as a bactericidal and contrast agent. Int. J. Nanomed. 2020, 15, 6961–6973. [Google Scholar] [CrossRef]
- Jovanović, S.; Marković, Z.; Marković, B.T. Carbon-based nanomaterials as agents for photodynamic therapy. Int. J. Cancer Res. Prev. 2017, 10, 125–172. [Google Scholar]
- Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, C.; Yang, D.; Shao, Z.; Hu, Y.; Chen, J.; Yuwen, L.; Weng, L.; Luo, Z.; Wang, L. Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Phys. Chem. Chem. Phys. 2018, 20, 17262–17267. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R.; Chen, Q.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2020, 232, 119700. [Google Scholar] [CrossRef]
- Thakur, M.; Kumawat, M.K.; Srivastava, R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv. 2017, 7, 5251–5261. [Google Scholar] [CrossRef]
- Markovic, Z.M.; Harhaji-Trajkovic, L.M.; Todorovic-Markovic, B.M.; Kepić, D.P.; Arsikin, K.M.; Jovanović, S.P.; Pantovic, A.C.; Dramićanin, M.D.; Trajkovic, V.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 2011, 32, 1121–1129. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, C.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B 2018, 8, 137–146. [Google Scholar] [CrossRef]
- Ruiz, V.; Yate, L.; García, I.; Cabanero, G.; Grande, H.-J. Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon 2017, 116, 366–374. [Google Scholar] [CrossRef]
- Krunić, M.; Ristić, B.; Bošnjak, M.; Paunović, V.; Tovilović-Kovačević, G.; Zogović, N.; Mirčić, A.; Marković, Z.; Todorović-Marković, B.; Jovanović, S.; et al. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. Free Radic. Biol. Med. 2021, 177, 167–180. [Google Scholar] [CrossRef]
- Chong, Y.; Ge, C.; Fang, G.; Tian, X.; Ma, X.; Wen, T.; Wamer, W.G.; Chen, C.; Chai, Z.; Yin, J.-J. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano 2016, 10, 8690–8699. [Google Scholar] [CrossRef]
- Jovanovic, S.P.; Syrgiannis, Z.; Markovic, Z.M.; Bonasera, A.; Kepic, D.P.; Budimir, M.D.; Milivojevic, D.D.; Spasojevic, V.D.; Dramicanin, M.D.; Pavlovic, V.B.; et al. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy. ACS Appl. Mater. Interfaces 2015, 7, 25865–25874. [Google Scholar] [CrossRef] [PubMed]
- Raşa, M.; Kuipers, B.W.M.; Philipse, A.P. Atomic Force Microscopy and Magnetic Force Microscopy Study of Model Colloids. J. Colloid Interface Sci. 2002, 250, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Mater. Today Proc. 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Das, B.; Dadhich, P.; Pal, P.; Srivas, P.K.; Bankoti, K.; Dhara, S. Carbon nanodots from date molasses: New nanolights for the in vitro scavenging of reactive oxygen species. J. Mater. Chem. B 2014, 2, 6839–6847. [Google Scholar] [CrossRef]
- Dimkić, I.; Ristivojević, P.; Janakiev, T.; Berić, T.; Trifković, J.; Milojković-Opsenica, D.; Stanković, S. Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. Ind. Crops Prod. 2016, 94, 856–871. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.-C.; Sun, H.; Fan, L.; Han, M.; et al. Facile Synthesis of Water-Soluble, Highly Fluorescent Graphene Quantum Dots as a Robust Biological Label for Stem Cells. J. Mater. Chem. 2012, 22, 7461–7467. [Google Scholar] [CrossRef]
- Jovanović, S.; Dorontić, S.; Jovanović, D.; Ciasca, G.; Budimir, M.; Bonasera, A.; Scopelliti, M.; Marković, O.; Todorović Marković, B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. Ceram. Int. 2020, 46, 23611–23622. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15–18. [Google Scholar] [CrossRef]
- Aidas, K.; Kongsted, J.; Osted, A.; Mikkelsen, K.V.; Christiansen, O. Coupled cluster calculation of the n → pi* electronic transition of acetone in aqueous solution. J. Phys. Chem. A 2005, 109, 8001–8010. [Google Scholar] [CrossRef]
- Abbas, A.; Tabish, T.A.; Bull, S.J.; Lim, T.M.; Phan, A.N. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. Sci. Rep. 2020, 10, 21262. [Google Scholar] [CrossRef]
- Özönder, Ş.; Ünlü, C.; Güleryüz, C.; Trabzon, L. Doped Graphene Quantum Dots UV-Vis Absorption Spectrum: A high-throughput TDDFT study. arXiv 2022, arXiv:2206.01969. [Google Scholar]
- Gan, Z.; Xu, H.; Hao, Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges. Nanoscale 2016, 8, 7794–7807. [Google Scholar] [CrossRef]
- Song, S.-H.; Jang, M.; Yoon, H.; Cho, Y.-H.; Jeon, S.; Kim, B.-H. Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Adv. 2016, 6, 97990–97994. [Google Scholar] [CrossRef]
- Dorontic, S.; Bonasera, A.; Scopelliti, M.; Markovic, O.; Bajuk Bogdanović, D.; Ciasca, G.; Romanò, S.; Dimkić, I.; Budimir, M.; Marinković, D.; et al. Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains. Nanomaterials 2022, 12, 2714. [Google Scholar] [CrossRef]
- Nagarajan, J.; Ramanan, R.N.; Raghunandan, M.E.; Galanakis, C.M.; Krishnamurthy, N.P. Chapter 8—Carotenoids. In Nutraceutical and Functional Food Components; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 259–296. [Google Scholar]
- Qiu, Y.; Wang, Z.; Owens, A.C.E.; Kulaots, I.; Chen, Y.; Kane, A.B.; Hurt, R.H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 2014, 6, 11744–11755. [Google Scholar] [CrossRef]
- Jovanović, S.P.; Syrgiannis, Z.; Budimir, M.D.; Milivojević, D.D.; Jovanovic, D.J.; Pavlović, V.B.; Papan, J.M.; Bartenwerfer, M.; Mojsin, M.M.; Stevanović, M.J.; et al. Graphene quantum dots as singlet oxygen producer or radical quencher—The matter of functionalization with urea/thiourea. Mater. Sci. Eng. C 2020, 109, 110539. [Google Scholar] [CrossRef]
- Amponsah, I.; Orman, E.; Mensah, A.; Sarpong, F.; Armah, F.; Sarpong, L. Development and validation of a radical scavenging antioxidant assay using potassium permanganate. J. Sci. Innov. Res. 2016, 5, 36–42. [Google Scholar] [CrossRef]
- Gaber, N.B.; El-Dahy, S.I.; Shalaby, E.A. Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Convers. Biorefin. 2021, 1–10. [Google Scholar] [CrossRef]
Sample | Height (nm) | Diameter (nm) |
---|---|---|
25GQDIPA-EDA | 0.86 ± 0.29 | 19.00 ± 4.91 |
50GQDIPA-EDA | 1.08 ± 0.51 | 32.92 ± 6.70 |
200GQDIPA-EDA | 9.3 ± 8.99 | 89.19 ± 24.80 |
200GQD-1EDA | 1.32 ± 0.63 | 33.46 ± 7.22 |
200GQD-5EDA | 2.49 ± 0.85 | 35.73 ± 8.85 |
200GQD-10EDA | 1.65 ± 0.71 | 45.74 ± 7.86 |
Bacterial Strain | 25GQDIPA-EDA | 50GQDIPA-EDA | 200GQD-1EDA | 200GQD-10EDA | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Listeria monocytogenes ATCC 13932 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Bacillus cereus ATCC 11778 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Streptococcus sanguinis | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Streptococcus pyogenes | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Streptococcus mutans | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Pseudomonas aeruginosa ATCC 10145 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Candida albicans ATCC 10231 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
A | 0.94 | 0.97 | 0.24 | 0.23 | 0.56 | 0.58 | 0.53 | 0.52 | 600 |
B | 0.91 | 0.96 | 0.21 | 0.22 | 0.52 | 0.53 | 0.52 | 0.57 | 600 |
C | 0.88 | 0.87 | 0.23 | 0.22 | 0.5 | 0.52 | 0.7 | 0.63 | 600 |
D | 0.77 | 0.7 | 0.23 | 0.23 | 0.5 | 0.51 | 0.7 | 0.63 | 600 |
E | 0.68 | 0.7 | 0.23 | 0.22 | 0.49 | 0.48 | 0.62 | 0.57 | 600 |
F | 0.8 | 0.72 | 0.25 | 0.2 | 0.5 | 0.51 | 0.55 | 0.59 | 600 |
G | 0.83 | 0.75 | 0.17 | 0.2 | 0.5 | 0.49 | 0.58 | 0.59 | 600 |
H | 0.05 | 0.38 | 0.05 | 0.06 | 0.05 | 0.05 | 0.06 | 0.11 | 600 |
3 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | ||
A | 0.83 | 0.85 | 0.3 | 0.32 | 0.46 | 0.5 | 0.42 | 0.43 | 600 |
B | 0.87 | 0.93 | 0.21 | 0.27 | 0.45 | 0.45 | 0.51 | 0.49 | 600 |
C | 0.9 | 0.9 | 0.18 | 0.25 | 0.48 | 0.49 | 0.57 | 0.59 | 600 |
D | 0.88 | 0.76 | 0.13 | 0.17 | 0.4 | 0.46 | 0.48 | 0.47 | 600 |
E | 0.69 | 0.69 | 0.14 | 0.17 | 0.53 | 0.52 | 0.53 | 0.49 | 600 |
F | 0.9 | 0.63 | 0.15 | 0.15 | 0.47 | 0.47 | 0.49 | 0.5 | 600 |
G | 0.69 | 0.58 | 0.13 | 0.41 | 0.42 | 0.45 | 0.59 | 0.58 | 600 |
H | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 600 |
3 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | ||
A | 0.97 | 0.94 | 0.37 | 0.41 | 0.54 | 0.56 | 0.46 | 0.38 | 600 |
B | 0.9 | 0.86 | 0.31 | 0.32 | 0.54 | 0.55 | 0.43 | 0.37 | 600 |
C | 0.82 | 0.77 | 0.25 | 0.26 | 0.57 | 0.52 | 0.52 | 0.5 | 600 |
D | 0.68 | 0.63 | 0.22 | 0.19 | 0.48 | 0.47 | 0.49 | 0.49 | 600 |
E | 0.63 | 0.59 | 0.17 | 0.18 | 0.45 | 0.45 | 0.47 | 0.53 | 600 |
F | 0.59 | 0.6 | 0.16 | 0.19 | 0.45 | 0.47 | 0.53 | 0.55 | 600 |
G | 0.61 | 0.63 | 0.15 | 0.16 | 0.44 | 0.47 | 0.6 | 0.48 | 600 |
H | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanovic, S.; Bonasera, A.; Dorontic, S.; Zmejkoski, D.; Milivojevic, D.; Janakiev, T.; Todorovic Markovic, B. Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. Materials 2022, 15, 6525. https://doi.org/10.3390/ma15196525
Jovanovic S, Bonasera A, Dorontic S, Zmejkoski D, Milivojevic D, Janakiev T, Todorovic Markovic B. Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. Materials. 2022; 15(19):6525. https://doi.org/10.3390/ma15196525
Chicago/Turabian StyleJovanovic, Svetlana, Aurelio Bonasera, Sladjana Dorontic, Danica Zmejkoski, Dusan Milivojevic, Tamara Janakiev, and Biljana Todorovic Markovic. 2022. "Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots" Materials 15, no. 19: 6525. https://doi.org/10.3390/ma15196525
APA StyleJovanovic, S., Bonasera, A., Dorontic, S., Zmejkoski, D., Milivojevic, D., Janakiev, T., & Todorovic Markovic, B. (2022). Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. Materials, 15(19), 6525. https://doi.org/10.3390/ma15196525