Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of Graphene Quantum Dots
2.3. Characterization of Graphene Quantum Dots
2.3.1. Morphology Analysis of GQDs: Atomic Force Microscopy and Transmission Electron Microscopy
2.3.2. Structural Analyses: Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS)
2.3.3. UV/Vis Spectroscopy
2.3.4. Photoluminescence (PL) Spectroscopy
2.3.5. Electron Paramagnetic Resonance (EPR) Spectroscopy
2.3.6. Photo-Induced Antibacterial Activity
3. Results and Discussion
Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, S. Graphene Quantum Dots—A New Member of the Graphene Family: Structure, Properties, and Biomedical Applications. In Handbook of Graphene Set, I–VIII.; Edvige Celasco, A.N.C., Stauber, T., Zhang, M., Ozkan, C., Ozkan, U., Palys, B., Harun, S.W., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 267–299. [Google Scholar]
- Jang, M.-H.; Yang, H.; Chang, Y.H.; Park, H.-C.; Park, H.; Cho, H.H.; Kim, B.J.; Kim, Y.-H.; Cho, Y.-H. Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dots. Nanoscale 2017, 9, 18635–18643. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kong, W.; Wang, L.; Zhang, J.Z.; Li, Y.; Liu, X.; Li, Y. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Phys. Chem. Chem. Phys. 2019, 21, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Xue, Y. Edge-oxidation induced non-radiative recombination dynamics in graphene quantum dots: A theoretical insight from Fermi’s golden rule. Mol. Phys. 2022, 120, e2025465. [Google Scholar] [CrossRef]
- Feng, J.; Dong, H.; Yu, L.; Dong, L. The optical and electronic properties of graphene quantum dots with oxygen-containing groups: A density functional theory study. J. Mater. Chem. C 2017, 5, 5984–5993. [Google Scholar] [CrossRef]
- Rabeya, R.; Mahalingam, S.; Manap, A.; Satgunam, M.; Akhtaruzzaman, M.; Chia, C.H. Structural defects in graphene quantum dots: A review. Quantum Chem. 2022, 122, e26900. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, W.; Via, B.K. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids Surf. B Biointerfaces 2014, 118, 72–76. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 2012, 48, 10177–10179. [Google Scholar] [CrossRef]
- Tabish, T.A.; Scotton, C.J.; Ferguson, D.C.J.; Lin, L.; der Veen, A.V.; Lowry, S.; Ali, M.; Jabeen, F.; Ali, M.; Winyard, P.G.; et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 2018, 13, 1923–1937. [Google Scholar] [CrossRef] [Green Version]
- Halder, A.; Godoy-Gallardo, M.; Ashley, J.; Feng, X.; Zhou, T.; Hosta-Rigau, L.; Sun, Y. One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl. Bio Mater. 2018, 1, 452–461. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10–14. [Google Scholar] [CrossRef]
- Li, S.-Y.; He, L. Recent progresses of quantum confinement in graphene quantum dots. Front. Phys. 2021, 17, 33201. [Google Scholar] [CrossRef]
- Biswas, M.C.; Islam, M.T.; Nandy, P.K.; Hossain, M.M. Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. ACS Mater. Lett. 2021, 3, 889–911. [Google Scholar] [CrossRef]
- Tan, X.; Li, Y.; Li, X.; Zhou, S.; Fan, L.; Yang, S. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 2015, 51, 2544–2546. [Google Scholar] [CrossRef]
- Marković, Z.M.; Labudová, M.; Danko, M.; Matijašević, D.; Mičušík, M.; Nádaždy, V.; Kováčová, M.; Kleinová, A.; Špitalský, Z.; Pavlović, V.; et al. Highly efficient antioxidant F- And Cl-doped carbon quantum dots for bioimaging. ACS Sustain. Chem. Eng. 2020, 8, 16327–16338. [Google Scholar] [CrossRef]
- Zhu, S.; Zhou, N.; Hao, Z.; Maharjan, S.; Zhao, X.; Song, Y.; Sun, B.; Zhang, K.; Zhang, J.; Sun, H.; et al. Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Adv. 2015, 5, 39399–39403. [Google Scholar] [CrossRef]
- Dorontić, S.; Jovanović, S.; Bonasera, A. Shedding light on graphene quantum dots: Key synthetic strategies, characterization tools, and cutting-edge applications. Materials 2021, 14, 6153. [Google Scholar] [CrossRef]
- Kuo, W.S.; Yeh, T.S.; Chang, C.Y.; Liu, J.C.; Chen, C.H.; So, E.C.; Wu, P.C. Amino-functionalized nitrogen-doped graphene quantum dots for efficient enhancement of two-photon-excitation photodynamic therapy: Functionalized nitrogen as a bactericidal and contrast agent. Int. J. Nanomed. 2020, 15, 6961–6973. [Google Scholar] [CrossRef]
- Jovanović, S.; Marković, Z.; Marković, B.T. Carbon-based nanomaterials as agents for photodynamic therapy. Int. J. Cancer Res. Prev. 2017, 10, 125–172. [Google Scholar]
- Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, C.; Yang, D.; Shao, Z.; Hu, Y.; Chen, J.; Yuwen, L.; Weng, L.; Luo, Z.; Wang, L. Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Phys. Chem. Chem. Phys. 2018, 20, 17262–17267. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R.; Chen, Q.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2020, 232, 119700. [Google Scholar] [CrossRef]
- Thakur, M.; Kumawat, M.K.; Srivastava, R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv. 2017, 7, 5251–5261. [Google Scholar] [CrossRef]
- Markovic, Z.M.; Harhaji-Trajkovic, L.M.; Todorovic-Markovic, B.M.; Kepić, D.P.; Arsikin, K.M.; Jovanović, S.P.; Pantovic, A.C.; Dramićanin, M.D.; Trajkovic, V.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 2011, 32, 1121–1129. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, C.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B 2018, 8, 137–146. [Google Scholar] [CrossRef]
- Ruiz, V.; Yate, L.; García, I.; Cabanero, G.; Grande, H.-J. Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon 2017, 116, 366–374. [Google Scholar] [CrossRef]
- Krunić, M.; Ristić, B.; Bošnjak, M.; Paunović, V.; Tovilović-Kovačević, G.; Zogović, N.; Mirčić, A.; Marković, Z.; Todorović-Marković, B.; Jovanović, S.; et al. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. Free Radic. Biol. Med. 2021, 177, 167–180. [Google Scholar] [CrossRef]
- Chong, Y.; Ge, C.; Fang, G.; Tian, X.; Ma, X.; Wen, T.; Wamer, W.G.; Chen, C.; Chai, Z.; Yin, J.-J. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano 2016, 10, 8690–8699. [Google Scholar] [CrossRef]
- Jovanovic, S.P.; Syrgiannis, Z.; Markovic, Z.M.; Bonasera, A.; Kepic, D.P.; Budimir, M.D.; Milivojevic, D.D.; Spasojevic, V.D.; Dramicanin, M.D.; Pavlovic, V.B.; et al. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy. ACS Appl. Mater. Interfaces 2015, 7, 25865–25874. [Google Scholar] [CrossRef] [PubMed]
- Raşa, M.; Kuipers, B.W.M.; Philipse, A.P. Atomic Force Microscopy and Magnetic Force Microscopy Study of Model Colloids. J. Colloid Interface Sci. 2002, 250, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Mater. Today Proc. 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Das, B.; Dadhich, P.; Pal, P.; Srivas, P.K.; Bankoti, K.; Dhara, S. Carbon nanodots from date molasses: New nanolights for the in vitro scavenging of reactive oxygen species. J. Mater. Chem. B 2014, 2, 6839–6847. [Google Scholar] [CrossRef]
- Dimkić, I.; Ristivojević, P.; Janakiev, T.; Berić, T.; Trifković, J.; Milojković-Opsenica, D.; Stanković, S. Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. Ind. Crops Prod. 2016, 94, 856–871. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.-C.; Sun, H.; Fan, L.; Han, M.; et al. Facile Synthesis of Water-Soluble, Highly Fluorescent Graphene Quantum Dots as a Robust Biological Label for Stem Cells. J. Mater. Chem. 2012, 22, 7461–7467. [Google Scholar] [CrossRef]
- Jovanović, S.; Dorontić, S.; Jovanović, D.; Ciasca, G.; Budimir, M.; Bonasera, A.; Scopelliti, M.; Marković, O.; Todorović Marković, B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. Ceram. Int. 2020, 46, 23611–23622. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15–18. [Google Scholar] [CrossRef]
- Aidas, K.; Kongsted, J.; Osted, A.; Mikkelsen, K.V.; Christiansen, O. Coupled cluster calculation of the n → pi* electronic transition of acetone in aqueous solution. J. Phys. Chem. A 2005, 109, 8001–8010. [Google Scholar] [CrossRef]
- Abbas, A.; Tabish, T.A.; Bull, S.J.; Lim, T.M.; Phan, A.N. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. Sci. Rep. 2020, 10, 21262. [Google Scholar] [CrossRef]
- Özönder, Ş.; Ünlü, C.; Güleryüz, C.; Trabzon, L. Doped Graphene Quantum Dots UV-Vis Absorption Spectrum: A high-throughput TDDFT study. arXiv 2022, arXiv:2206.01969. [Google Scholar]
- Gan, Z.; Xu, H.; Hao, Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges. Nanoscale 2016, 8, 7794–7807. [Google Scholar] [CrossRef]
- Song, S.-H.; Jang, M.; Yoon, H.; Cho, Y.-H.; Jeon, S.; Kim, B.-H. Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Adv. 2016, 6, 97990–97994. [Google Scholar] [CrossRef]
- Dorontic, S.; Bonasera, A.; Scopelliti, M.; Markovic, O.; Bajuk Bogdanović, D.; Ciasca, G.; Romanò, S.; Dimkić, I.; Budimir, M.; Marinković, D.; et al. Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains. Nanomaterials 2022, 12, 2714. [Google Scholar] [CrossRef]
- Nagarajan, J.; Ramanan, R.N.; Raghunandan, M.E.; Galanakis, C.M.; Krishnamurthy, N.P. Chapter 8—Carotenoids. In Nutraceutical and Functional Food Components; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 259–296. [Google Scholar]
- Qiu, Y.; Wang, Z.; Owens, A.C.E.; Kulaots, I.; Chen, Y.; Kane, A.B.; Hurt, R.H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 2014, 6, 11744–11755. [Google Scholar] [CrossRef]
- Jovanović, S.P.; Syrgiannis, Z.; Budimir, M.D.; Milivojević, D.D.; Jovanovic, D.J.; Pavlović, V.B.; Papan, J.M.; Bartenwerfer, M.; Mojsin, M.M.; Stevanović, M.J.; et al. Graphene quantum dots as singlet oxygen producer or radical quencher—The matter of functionalization with urea/thiourea. Mater. Sci. Eng. C 2020, 109, 110539. [Google Scholar] [CrossRef]
- Amponsah, I.; Orman, E.; Mensah, A.; Sarpong, F.; Armah, F.; Sarpong, L. Development and validation of a radical scavenging antioxidant assay using potassium permanganate. J. Sci. Innov. Res. 2016, 5, 36–42. [Google Scholar] [CrossRef]
- Gaber, N.B.; El-Dahy, S.I.; Shalaby, E.A. Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Convers. Biorefin. 2021, 1–10. [Google Scholar] [CrossRef]
Sample | Height (nm) | Diameter (nm) |
---|---|---|
25GQDIPA-EDA | 0.86 ± 0.29 | 19.00 ± 4.91 |
50GQDIPA-EDA | 1.08 ± 0.51 | 32.92 ± 6.70 |
200GQDIPA-EDA | 9.3 ± 8.99 | 89.19 ± 24.80 |
200GQD-1EDA | 1.32 ± 0.63 | 33.46 ± 7.22 |
200GQD-5EDA | 2.49 ± 0.85 | 35.73 ± 8.85 |
200GQD-10EDA | 1.65 ± 0.71 | 45.74 ± 7.86 |
Bacterial Strain | 25GQDIPA-EDA | 50GQDIPA-EDA | 200GQD-1EDA | 200GQD-10EDA | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Listeria monocytogenes ATCC 13932 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Bacillus cereus ATCC 11778 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Streptococcus sanguinis | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Streptococcus pyogenes | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Streptococcus mutans | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Pseudomonas aeruginosa ATCC 10145 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
Candida albicans ATCC 10231 | >0.8 | - | >0.8 | - | >0.8 | - | >0.8 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
A | 0.94 | 0.97 | 0.24 | 0.23 | 0.56 | 0.58 | 0.53 | 0.52 | 600 |
B | 0.91 | 0.96 | 0.21 | 0.22 | 0.52 | 0.53 | 0.52 | 0.57 | 600 |
C | 0.88 | 0.87 | 0.23 | 0.22 | 0.5 | 0.52 | 0.7 | 0.63 | 600 |
D | 0.77 | 0.7 | 0.23 | 0.23 | 0.5 | 0.51 | 0.7 | 0.63 | 600 |
E | 0.68 | 0.7 | 0.23 | 0.22 | 0.49 | 0.48 | 0.62 | 0.57 | 600 |
F | 0.8 | 0.72 | 0.25 | 0.2 | 0.5 | 0.51 | 0.55 | 0.59 | 600 |
G | 0.83 | 0.75 | 0.17 | 0.2 | 0.5 | 0.49 | 0.58 | 0.59 | 600 |
H | 0.05 | 0.38 | 0.05 | 0.06 | 0.05 | 0.05 | 0.06 | 0.11 | 600 |
3 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | ||
A | 0.83 | 0.85 | 0.3 | 0.32 | 0.46 | 0.5 | 0.42 | 0.43 | 600 |
B | 0.87 | 0.93 | 0.21 | 0.27 | 0.45 | 0.45 | 0.51 | 0.49 | 600 |
C | 0.9 | 0.9 | 0.18 | 0.25 | 0.48 | 0.49 | 0.57 | 0.59 | 600 |
D | 0.88 | 0.76 | 0.13 | 0.17 | 0.4 | 0.46 | 0.48 | 0.47 | 600 |
E | 0.69 | 0.69 | 0.14 | 0.17 | 0.53 | 0.52 | 0.53 | 0.49 | 600 |
F | 0.9 | 0.63 | 0.15 | 0.15 | 0.47 | 0.47 | 0.49 | 0.5 | 600 |
G | 0.69 | 0.58 | 0.13 | 0.41 | 0.42 | 0.45 | 0.59 | 0.58 | 600 |
H | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 600 |
3 | 4 | 7 | 8 | 9 | 10 | 11 | 12 | ||
A | 0.97 | 0.94 | 0.37 | 0.41 | 0.54 | 0.56 | 0.46 | 0.38 | 600 |
B | 0.9 | 0.86 | 0.31 | 0.32 | 0.54 | 0.55 | 0.43 | 0.37 | 600 |
C | 0.82 | 0.77 | 0.25 | 0.26 | 0.57 | 0.52 | 0.52 | 0.5 | 600 |
D | 0.68 | 0.63 | 0.22 | 0.19 | 0.48 | 0.47 | 0.49 | 0.49 | 600 |
E | 0.63 | 0.59 | 0.17 | 0.18 | 0.45 | 0.45 | 0.47 | 0.53 | 600 |
F | 0.59 | 0.6 | 0.16 | 0.19 | 0.45 | 0.47 | 0.53 | 0.55 | 600 |
G | 0.61 | 0.63 | 0.15 | 0.16 | 0.44 | 0.47 | 0.6 | 0.48 | 600 |
H | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanovic, S.; Bonasera, A.; Dorontic, S.; Zmejkoski, D.; Milivojevic, D.; Janakiev, T.; Todorovic Markovic, B. Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. Materials 2022, 15, 6525. https://doi.org/10.3390/ma15196525
Jovanovic S, Bonasera A, Dorontic S, Zmejkoski D, Milivojevic D, Janakiev T, Todorovic Markovic B. Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. Materials. 2022; 15(19):6525. https://doi.org/10.3390/ma15196525
Chicago/Turabian StyleJovanovic, Svetlana, Aurelio Bonasera, Sladjana Dorontic, Danica Zmejkoski, Dusan Milivojevic, Tamara Janakiev, and Biljana Todorovic Markovic. 2022. "Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots" Materials 15, no. 19: 6525. https://doi.org/10.3390/ma15196525
APA StyleJovanovic, S., Bonasera, A., Dorontic, S., Zmejkoski, D., Milivojevic, D., Janakiev, T., & Todorovic Markovic, B. (2022). Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. Materials, 15(19), 6525. https://doi.org/10.3390/ma15196525