Interaction of Geopolymer Filler and Alkali Molarity Concentration towards the Fire Properties of Glass-Reinforced Epoxy Composites Fabricated Using Filament Winding Technique
Abstract
:1. Introduction
2. Materials and Experimental Details
2.1. Materials Selection
2.2. Experimental Procedure
3. Results and Discussion
3.1. X-ray Fluorescence Analysis (XRF)
3.2. Surface Morphological Analysis of High Calcium Pozzolanic
3.3. Surface Morphology of High Calcium Pozzolanic-Based Geopolymer
3.4. Viscosity Analysis Test
3.5. Water Absorption Test
3.6. Surface Morphological of Glass-Reinforced Epoxy Filled with Geopolymer Filler
3.7. Compression Analysis Test
3.8. Hydrostatic Pressure Strength/Burst Analysis
3.9. Flame Retardancy and Burning Behaviors
4. Summary and Conclusions
- The experimental result shows the performance of the product through the surface analysis, surface morphology, mechanical testing, and thermal/fire resistance testing. The samples from GRE pipe with high calcium pozzolanic-based geopolymer of 30 wt percent, 12 M, show the maximum strength relative to the other samples, whereas GRE pipe without any geopolymer filler shows the lowest compressive strength, according to the results of the compression tests and the pressure strength test.
- GRE-filled high calcium pozzolanic-based geopolymer pipe samples show high thermal stability during thermal/fire resistance tests when compared to GRE without geopolymer filler pipe samples.
- The geopolymer made from waste materials has greater potential to be used as a matrix filler in composite materials with glass fiber when using a filament winding technique because of its good qualities.
- By using a filament winding process, geopolymer composite can be used as a filler in piping systems, which is not only more ecologically friendly but also lower in cost to produce.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Lu, B.; Bai, T.; Wang, H.; Du, F.; Zhang, Y.; Cai, L.; Jiang, C.; Wang, W. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 2019, 224, 930–949. [Google Scholar] [CrossRef]
- Abdullah, M.M.A.B.; Ming, L.Y.; Yong, H.C.; Tahir, M.F.M. Clay-Based Materials in Geopolymer Technology; InTech Open: London, UK, 2018. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Palomo, A.; Maltseva, O.; Garcia-Lodeiro, I.; Fernández-Jiménez, A. Portland Versus Alkaline Cement: Continuity or Clean Break: A Key Decision for Global Sustainability. Front. Chem. 2021, 9, 653. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Sofri, L.A.; Abdullah, M.M.A.B.; Hasan, M.R.M.; Huang, Y. Effect of NaOH concentration and fly ash/alkaline activator ratio on the compressive strength of road base material. AIP Conf. Proc. 2018, 2030, 020293. [Google Scholar] [CrossRef]
- Jawadand, S.; Randive, K. A Sustainable Approach to Transforming Mining Waste into Value-Added Products; Springer: Berlin, Germany, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Samal, S.; Thanh, N.P.; Marvalova, B.; Petrikova, I. Thermal Characterization of Metakaolin-Based Geopolymer. JOM 2017, 69, 2480–2484. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Sun, Z.; Huang, P.; Li, Y.-Q.; Hu, N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019, 1, 2–30. [Google Scholar] [CrossRef]
- Sengwa, R.; Dhatarwal, P. Toward multifunctionality of PEO/PMMA/MMT hybrid polymer nanocomposites: Promising morphological, nanostructural, thermal, broadband dielectric, and optical properties. J. Phys. Chem. Solids 2022, 166, 110708. [Google Scholar] [CrossRef]
- Bu, Y.; Xu, M.; Liang, H.; Gao, K.; Zhang, Y.; Chen, B.; Min, C.; Hua, X.; Fu, Y. Fabrication of low friction and wear carbon/epoxy nanocomposites using the confinement and self-lubricating function of carbon nanocage fillers. Appl. Surf. Sci. 2020, 538, 148109. [Google Scholar] [CrossRef]
- Shahari, S.; Fathullah, M.; Abdullah, M.M.A.B.; Shayfull, Z.; Mia, M.; Darmawan, V.E.B. Recent developments in fire retardant glass fibre reinforced epoxy composite and geopolymer as a potential fire-retardant material: A review. Constr. Build. Mater. 2021, 277, 122246. [Google Scholar] [CrossRef]
- Peerzada, M.; Abbasi, S.; Lau, K.T.; Hameed, N. Additive Manufacturing of Epoxy Resins: Materials, Methods, and Latest Trends. Ind. Eng. Chem. Res. 2020, 59, 6375–6390. [Google Scholar] [CrossRef]
- Daud, Y.M.; Shern, T.W.; Zainal, F.F.; Abu Hashim, M.F.; Lun, L.Z.; Hasri; Hartati. Flexural properties of polyethylene composites based kaolin geo-filler. AIP Conf. Proc. 2020, 2291, 020029. [Google Scholar] [CrossRef]
- Gemi, L.; Kayrıcı, M.; Uludağ, M.; Gemi, D.S.; Şahin, Ö.S. Experimental and statistical analysis of low velocity impact response of filament wound composite pipes. Compos. Part B Eng. 2018, 149, 38–48. [Google Scholar] [CrossRef]
- Saraç, İ.; Adin, H.; Temiz, Ş. A research on the fatigue strength of the single-lap joint joints bonded with nanoparti-cle-reinforced adhesive. Weld. World 2021, 65, 635–642. [Google Scholar] [CrossRef]
- Chakraverty, A.; Dash, S.; Maharana, H.; Beura, S.; Mohanty, U. A novel investigation on durability of GRE composite pipe for prolonged sea water transportation. Compos. Commun. 2019, 17, 42–50. [Google Scholar] [CrossRef]
- Agrela, F.; Alaejos, P.; Thomas, C.; Rueda, J.; Silva, R.; Moreno-Juez, J.; Sanjuán, M.; de Brito, J.; de Rojas, M.S. Normative review and necessary advances to promote the use of recycled aggregates and by-products in cement-based materials. Civil. Struct. Eng. 2021, 735–776. [Google Scholar] [CrossRef]
- Phoo-Ngernkham, T.; Phiangphimai, C.; Intarabut, D.; Hanjitsuwan, S.; Damrongwiriyanupap, N.; Li, L.-Y.; Chindaprasirt, P. Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Constr. Build. Mater. 2020, 2020, 247. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, J.; Kaur, M. Microstructure and strength development of fly ash-based geopolymer mortar: Role of nano-metakaolin. Constr. Build. Mater. 2018, 190, 672–679. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Abdullah, M.; Nabiałek, M.; Sandu, A.; Szmidla, J.; Jurczyńska, A.; Razak, R.; Aziz, I.; Jamil, N.; et al. Assessment of the Suitability of Ceramic Waste in Geopolymer Composites: An Appraisal. Materials 2021, 14, 3279. [Google Scholar] [CrossRef]
- Shehata, N.; Sayed, E.T.; Abdelkareem, M.A. Recent progress in environmentally friendly geopolymers: A review. Sci. Total Environ. 2020, 762, 143166. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, J.; Xu, S. Experimental Study of the Mechanical and Microstructure Characteristics of Coal Gangue Road Stabilization Materials Based on Alkali Slag Cementation. Materials 2021, 14, 3601. [Google Scholar] [CrossRef] [PubMed]
- John, S.K.; Nadir, Y.; Girija, K. Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review. Constr. Build. Mater. 2021, 280, 122443. [Google Scholar] [CrossRef]
- Chithambaram, S.J.; Kumar, S.; Prasad, M.M.; Adak, D. Effect of parameters on the compressive strength of fly ash based geopolymer concrete. Struct. Concr. 2018, 19, 1202–1209. [Google Scholar] [CrossRef]
- Ramagiri, K.K.; Kar, A. Effect of high-temperature on the microstructure of alkali-activated binder. Mater. Today Proc. 2020, 28, 1123–1129. [Google Scholar] [CrossRef]
- Fan, F.; Liu, Z.; Xu, G.; Peng, H.; Cai, C. Mechanical and thermal properties of fly ash based geopolymers. Constr. Build. Mater. 2018, 160, 66–81. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Tao, Z.; Castel, A.; Wang, K. High temperature resistance of fly ash/GGBFS-based geopolymer mor-tar with load-induced damage. Mater. Struct. 2020, 53, 1–21. [Google Scholar] [CrossRef]
- Metekong, J.V.S.; Kaze, C.R.; Adesina, A.; Nemaleu, J.G.D.; Djobo, J.N.Y.; Lemougna, P.N.; Alomayri, T.; Kamseu, E.; Melo, U.C.; Tatietse, T.T. Influence of Thermal Activation and Silica Modulus on the Properties of Clayey-Lateritic Based Geopolymer Binders Cured at Room Temperature. Silicon 2022, 1–18. [Google Scholar] [CrossRef]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- More, A.P. Flax fiber–based polymer composites: A review. Adv. Compos. Hybrid Mater. 2021, 5, 1–20. [Google Scholar] [CrossRef]
- Nongnuang, T.; Jitsangiam, P.; Rattanasak, U.; Tangchirapat, W.; Suwan, T.; Thongmunee, S. Characteristics of Waste Iron Powder as a Fine Filler in a High-Calcium Fly Ash Geopolymer. Materials 2021, 14, 2515. [Google Scholar] [CrossRef] [PubMed]
- Wongsa, A.; Kunthawatwong, R.; Naenudon, S.; Sata, V.; Chindaprasirt, P. Natural fiber reinforced high calcium fly ash geopolymer mortar. Constr. Build. Mater. 2020, 241, 118143. [Google Scholar] [CrossRef]
- Samal, S.; Blanco, I. An Application Review of Fiber-Reinforced Geopolymer Composite. Fibers 2021, 9, 23. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, X.; Wan, S.; Zheng, R.; Tong, J.; Hou, H.; Wang, T. Synthesis and characterization of geopolymer composites based on gasification coal fly ash and steel slag. Constr. Build. Mater. 2019, 211, 646–658. [Google Scholar] [CrossRef]
- Jithendra, C.; Elavenil, S. Effects of silica fume on workability and compressive strength properties of aluminosili-cate based flowable geopolymer mortar under ambient curing. Silicon 2020, 12, 1965–1974. [Google Scholar] [CrossRef]
- Biondi, L.; Perry, M.; Vlachakis, C.; Wu, Z.; Hamilton, A.; McAlorum, J. Ambient Cured Fly Ash Geopolymer Coatings for Concrete. Materials 2019, 12, 923. [Google Scholar] [CrossRef]
- Husin, N.A.; Bayuaji, R.; Tajunnisa, Y.; Darmawan, M.S.; Suprobo, P. Performance of high calcium fly ash based geopolymer concrete in chloride environment. GEOMATE J. 2020, 19, 107–113. [Google Scholar] [CrossRef]
- Lee, S.; van Riessen, A. A Review on Geopolymer Technology for Lunar Base Construction. Materials 2022, 15, 4516. [Google Scholar] [CrossRef]
- Azimi, E.A.; Abdullah, M.M.A.B.; Vizureanu, P.; Salleh, M.A.A.M.; Sandu, A.V.; Chaiprapa, J.; Yoriya, S.; Hussin, K.; Aziz, I.H. Strength Development and Elemental Distribution of Dolomite/Fly Ash Geopolymer Composite under Elevated Temperature. Materials 2020, 13, 1015. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Sarker, P.K.; Long, T.; Shi, X.; Wang, Q.; Cai, G. Investigating Various Factors Affecting the Long-Term Compressive Strength of Heat-Cured Fly Ash Geopolymer Concrete and the Use of Orthogonal Experimental Design Method. Int. J. Concr. Struct. Mater. 2019, 13, 63. [Google Scholar] [CrossRef]
- Ismail, H.; Sapuan, S.M.; Ilyas, R.A. Mineral-Filled Polymer Composites: Perspectives, Properties, and New Materials; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Faqir, N.M.; Shawabkeh, R.; Al-Harthi, M.; Wahhab, H.A. Fabrication of Geopolymers from Untreated Kaolin Clay for Construction Purposes. Geotech. Geol. Eng. 2018, 37, 129–137. [Google Scholar] [CrossRef]
- Rahman, A.; Mathur, V.; Asmatulu, R. Effect of nanoclay and graphene inclusions on the low-velocity impact resistance of Kevlar-epoxy laminated composites. Compos. Struct. 2018, 187, 481–488. [Google Scholar] [CrossRef]
- Abdila, S.; Abdullah, M.; Ahmad, R.; Rahim, S.; Rychta, M.; Wnuk, I.; Nabiałek, M.; Muskalski, K.; Tahir, M.; Syafwandi; et al. Evaluation on the Mechanical Properties of Ground Granulated Blast Slag (GGBS) and Fly Ash Stabilized Soil via Geopolymer Process. Materials 2021, 14, 2833. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.F.M.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Hasan, M.R.M.; Sandu, A.V.; Vizureanu, P.; Ghazali, C.M.R.; Kadir, A.A. Mechanical and Durability Analysis of Fly Ash Based Geopolymer with Various Compositions for Rigid Pavement Applications. Materials 2022, 15, 3458. [Google Scholar] [CrossRef] [PubMed]
- Astm D445—15a; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2015.
- Nazarenko, O.; Amelkovich, Y.; Bannov, A.; Berdyugina, I.; Maniyan, V. Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate. Polymers 2021, 13, 638. [Google Scholar] [CrossRef]
- Huang, X.; Wang, P.; Liu, J.; Xu, F.; Liu, C.; Xu, Z.; Ye, F. Patterning High-Resolution Microstructures on Ther-moplastics by Ceramic Nanoparticles Filled Epoxy Coated Molds for Duplicating Nature-Derived Functional Surfaces. ACS Appl. Mater. Interfaces 2022, 14, 28270–28279. [Google Scholar] [CrossRef]
- Astm D570—98; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2010.
- Hao, X.; Xian, G.; Huang, X.; Xin, M.; Shen, H. Effects of Adhesive Coating on the Hygrothermal Aging Perfor-mance of Pultruded CFRP Plates. Polymers 2020, 12, 491.3. [Google Scholar] [CrossRef]
- AlAnezi, K.; Al-Samhan, M.; Belkharchouche, M.; Abuhaimed, W.; Alali, S.; Alenizi, K.; Alfuraij, A. Comparative Analysis of Produced Water Collected from Different Oil Gathering Centers in Kuwait. J. Environ. Prot. 2018, 9, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Zhou, Z. Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Constr. Build. Mater. 2022, 333, 127353. [Google Scholar] [CrossRef]
- Astm D3410 / D3410m-03; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading. ASTM International: West Conshohocken, PA, USA, 2003.
- Nuhiji, B.; Bower, M.P.; Swait, T.; Phadnis, V.; Day, R.J.; Scaife, R.J. Simulation of carbon fibre composites in an industrial microwave. Mater. Today Proc. 2020, 34, 82–92. [Google Scholar] [CrossRef]
- Chang, X.; Xu, Q.; Lv, J.; Xu, L.; Zhu, Z.; Liu, S.; Liu, X.; Qin, J. Bioinspired 3D helical fibers toughened thermosetting composites. Compos. Part B Eng. 2021, 216, 108855. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Siva, I.; Karthikeyan, S.; Pulikkalparambil, H.; Parameswaranpillai, J.; Sanjay, M.R.; Siengchin, S. Mechanical, Structural, Thermal and Tribological Properties of Nanoclay Based Phenolic Composites; Springer: Berlin, Germany, 2020; pp. 123–138. [Google Scholar] [CrossRef]
- Kazemi-Khasragh, E.; Bahari-Sambran, F.; Platzer, C.; Eslami-Farsani, R. The synergistic effect of graphene nano-platelets–montmorillonite hybrid system on tribological behavior of epoxy-based nanocomposites. Tribol. Int. 2020, 151, 106472. [Google Scholar] [CrossRef]
- Yeasmin, S.; Yeum, J.H.; Yang, S.B. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril. Carbohydr. Polym. 2020, 240, 116307. [Google Scholar] [CrossRef] [PubMed]
- Gemi, L. Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Compos. Part B Eng. 2018, 153, 217–232. [Google Scholar] [CrossRef]
Raw Material | Epoxy + Hardener (%) | Geopolymer (%) |
---|---|---|
High Calcium Pozzolanic | 100 | 0 |
90 | 10 | |
80 | 20 | |
70 | 30 | |
60 | 40 |
Specimen | Test | Standard | Unit | Size of Samples | Age of Test | No. of Samples |
---|---|---|---|---|---|---|
Epoxy filled Geopolymer Filler | Viscosity Test | ASTM D445 | Pa.s | N/A | 2 h | 3 |
GRE filled Geopolymer filler | Water Absorption Test | ASTM D570 | % | 50.8 mm (Ø), 3.2 mm thickness | 28 Days | 3 |
GRE filled Geopolymer filler | Compressive Strength Test | ASTM D3410 | MPa | 25.4 mm (Ø) | 28 Days | 3 |
GRE filled Geopolymer filler | Pressure Strength Test | ASTM D2837 | Bar | 25.4 mm (Ø) | 28 Days | 3 |
GRE filled Geopolymer filler | Flame Test | ASTM D3801 | N/A | 25.4 mm (Ø) | 28 Days | 3 |
Oxide Composition | High Calcium Pozzolanic (%) |
---|---|
SiO2 | 9.07 |
Al2O3 | 3.1 |
CaO | 80.59 |
Fe2O3 | 5.19 |
MgO | 0.84 |
ZrO2 | 0.032 |
TiO2 | 0.39 |
K2O | 0.465 |
V2O5 | 0.030 |
Compressive Strength (MPa) | Compressive Strain (%) | Modulus Elasticity (MPa) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 10 | 20 | 30 | 40 | 10 | 20 | 30 | 40 | |
Epoxy | 53.36 | 0.04 | 1681.28 | |||||||||
8 M | 78.30 | 80.50 | 85.48 | 52.55 | 30.03 | 30.03 | 22.69 | 0.10 | 2166.61 | 2199.71 | 1984.72 | 1874.41 |
12 M | 78.33 | 90.19 | 94.64 | 72.13 | 0.04 | 0.06 | 0.06 | 0.05 | 2564.09 | 2699.54 | 2373.58 | 2183.51 |
Samples | UL-94 Rating | Dripping |
---|---|---|
GRE without Filler (Vertical) | V2 | Yes |
GRE without Filler (Horizontal) | HB | Yes |
GRE with 10% Geopolymer Filler (Vertical) | V1 | No |
GRE with 20% Geopolymer Filler (Vertical) | V1 | No |
GRE with 30% Geopolymer Filler (Vertical) | V1 | No |
GRE with 40% Geopolymer Filler (Vertical) | V1 | No |
GRE with Geopolymer Filler (Horizontal) | HB | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashim, M.F.A.; Faris, M.A.; Mydin, M.A.O.; Ghazali, C.M.R.; Daud, Y.M.; Abdullah, M.M.A.B.; Zainal, F.F.; Saloma; Mohd Tahir, M.F.; Yong, H.C.; et al. Interaction of Geopolymer Filler and Alkali Molarity Concentration towards the Fire Properties of Glass-Reinforced Epoxy Composites Fabricated Using Filament Winding Technique. Materials 2022, 15, 6495. https://doi.org/10.3390/ma15186495
Hashim MFA, Faris MA, Mydin MAO, Ghazali CMR, Daud YM, Abdullah MMAB, Zainal FF, Saloma, Mohd Tahir MF, Yong HC, et al. Interaction of Geopolymer Filler and Alkali Molarity Concentration towards the Fire Properties of Glass-Reinforced Epoxy Composites Fabricated Using Filament Winding Technique. Materials. 2022; 15(18):6495. https://doi.org/10.3390/ma15186495
Chicago/Turabian StyleHashim, Mohammad Firdaus Abu, Meor Ahmad Faris, Md Azree Othuman Mydin, Che Mohd Ruzaidi Ghazali, Yusrina Mat Daud, Mohd Mustafa Al Bakri Abdullah, Farah Farhana Zainal, Saloma, Muhammad Faheem Mohd Tahir, Heah Cheng Yong, and et al. 2022. "Interaction of Geopolymer Filler and Alkali Molarity Concentration towards the Fire Properties of Glass-Reinforced Epoxy Composites Fabricated Using Filament Winding Technique" Materials 15, no. 18: 6495. https://doi.org/10.3390/ma15186495
APA StyleHashim, M. F. A., Faris, M. A., Mydin, M. A. O., Ghazali, C. M. R., Daud, Y. M., Abdullah, M. M. A. B., Zainal, F. F., Saloma, Mohd Tahir, M. F., Yong, H. C., & Khorami, M. (2022). Interaction of Geopolymer Filler and Alkali Molarity Concentration towards the Fire Properties of Glass-Reinforced Epoxy Composites Fabricated Using Filament Winding Technique. Materials, 15(18), 6495. https://doi.org/10.3390/ma15186495