Next Article in Journal
Calculation of Radiative Properties for [82%Ar-18%CO2]-Fe Plasmas in MAG Welding Arc
Previous Article in Journal
Investigating the Effective Performance of Sandwich Panel with Petal Star-Triangular Core Using VAM-Based Equivalent Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Modeling Tracer Diffusion Coefficients of Any Type of Solutes in Polar and Non-Polar Dense Solvents

CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
*
Author to whom correspondence should be addressed.
Materials 2022, 15(18), 6416; https://doi.org/10.3390/ma15186416
Submission received: 8 August 2022 / Revised: 8 September 2022 / Accepted: 9 September 2022 / Published: 15 September 2022

Abstract

:
In this work, a simple two-parameters correlation based on the Rice and Gray, Lennard-Jones, and Stockmayer theories was devised for the calculation of binary diffusion coefficients ( D 12 ) of any type of solutes at infinite dilution in polar and non-polar solvents. This equation can be relevant for systems with polar solvents, since most models in the literature fail when strong intermolecular forces predominate in solution. The new correlation embodies the Stockmayer potential without requiring the dipole moments of any component, which significantly enlarges its application. It was validated with the largest D 12 database of polar and non-polar dense systems, with 8812 data points (NDP) spanning 553 systems, of which 133 have water as solvent (NDP = 1266), 89 contain polar solvents excluding water (NDP = 1405), 177 have supercritical carbon dioxide (SC-CO2) as solvent (NDP = 5028), and 154 have non-polar or weakly polar solvents excluding SC-CO2 (NDP = 1113). Overall, the model achieved an average deviation of only 3.43%, with accurate and unbiased behavior even for polar systems.

1. Introduction

Diffusion coefficients, namely binary diffusivities ( D 12 ), are of major importance for the chemical and related industries since it is a transport property required for the accurate design and simulation of processes limited by mass transfer kinetics [1]. The experimental measurement of D 12 is expensive in terms of equipment, chemicals, time, and the necessary apparatuses are frequently limited by their intrinsic range of operation that cannot encompass wide intervals of temperature and pressure. Hence, accurate models applicable over a wide range of temperature, pressure, and solvent and solute types (both in terms of size, molecular weight, chemical nature, and polarity) are of utmost importance.
For nonpolar and weekly polar solvent systems, which may or may not include polar solutes, there are already several published models providing good results. In 2021 Zêzere et al. [2] compared various models using a database containing 6180 data points of weakly and non-polar systems, and expressed their performances in terms of the well-known average absolute relative deviation (AARD):
AARD   % = 100 NDP i = 1 NDP D 12 , i calc D 12 , i exp D 12 , i exp
where NDP is the number of data points, and the superscripts calc and exp stand for calculated and experimental, respectively. The hydrodynamic Wilke-Chang equation [3], one of the simplest D 12 models, achieved good predictive results with AARD = 15.64%. Additionally, the predictive hybrid free-volume model of Tracer Liu-Silva-Macedo (TLSM) [4,5] attained an equivalent AARD of 16.84%, while their derived 1-parameter TLSMd and TLSMen correlations achieved average deviations of 4.53% and 4.55%, respectively, which represent a significant improvement over the seminal equation. Finally, the 2-parameters free-volume model of Dymond–Hildebrand–Batschinski (DHB) [6,7] achieved AARD = 4.23%; it is the simplest equation in the literature, and can be linearized to obtain parameters from experimental data.
On the other hand, in the case of polar solvents the situation is quite different with fewer models being applicable due to the increased complexity of the intermolecular interactions, mainly hydrogen bonding [8,9]. For instance, the predictive Wilke-Chang and Tyn-Calus equations [10] reached high deviations (AARD = 30.05% and 28.96%, respectively) when tested with 1994 data points from polar systems [11]. Concerning correlations, the DHB model (2-parameters, AARD = 6.02%) and the Rice and Gray approach of Magalhães et al. [11] (2-parameters, AARD = 4.27%) obtained good results for the same database [11]. Nonetheless, the last correlation requires the knowledge of the dipole moments of both solute and solvent which are frequently non-available or very complex to estimate and, unlike this essay, has been validated with a much smaller database (3463 data points/211 binary systems, from which 1994 data points/141 systems are for polar solvents). Finally, a machine learning approach based on the gradient boost model was developed by Aniceto et al. [12] achieving reliable results (AARD = 5.07%) especially in comparison with the previously mentioned equations.
Various empirical equations are available and can be applied to polar and non-polar solvent systems, namely those proposed by Magalhães et al. [13] and others sparsely tested in the literature [14,15,16,17,18]. Notwithstanding their suitability for D 12 correlation and the good results achieved (e.g., Magalhães et al. [13] obtained AARD = 2.8% for 8219 data points/539 systems), their scope of application is difficult to assess and they are generally tested with few data points (with exception for the work of Magalhães et al.).
In this work an upgraded Rice and Gray-based correlation for the calculation of binary diffusivities is presented and, with the objective to extend its applicability to polar solvent systems, a combined Stockmayer and Lennard-Jones (LJ) potential term is embodied. Unlike a previous approach in the field [11], the proposed model does not require the solvent molar volume at normal boiling point and the dipole moments of both solute and solvent which expands its applicability to any type of solutes in supercritical fluids, liquids, and dense gases involving nonpolar, weakly polar, and polar solvents. The model is tested with the largest database compiled until now comprehending 8812 data points (NDP) from 553 systems, from which 2671 points are from systems with a polar solvent, including water, and the remaining 6141 points are from nonpolar or weakly polar solvent systems where supercritical carbon dioxide (SC-CO2) is included. In relation to the previous work on polar systems [11] this essay includes a much larger database for validation, namely, 5349 (=8812–3463) points of which 677 (=2671–1994) are specific for polar solvents.

2. Model Development and Database

2.1. Rice and Gray D 12 Correlation

The D 12 model is based on the general Einstein equation [19,20], which relates diffusivity ( D ) with absolute temperature ( T ) and a non-null friction coefficient ( ξ ):
D = k B T ξ = k B T ξ H + ξ S = k B T ξ H + ξ S , S + ξ S , P
where k B is the Boltzmann constant ( 1.380658 × 10 16   g   cm 2   s 2   K ), ξ is the sum of a hard core ( ξ H ) and an attractive ( ξ S ) contribution, and ξ S embodies a Lennard-Jones (LJ) ( ξ S , S ) and a polar ( ξ S , P ) term. The ξ H coefficient is expressed by modifying the Enskog equation [21,22] with a correction term F [1]:
ξ H = 8 3   ρ n   σ   2   2 π m k B   T   g σ F
where ρ n is the number density, σ is the molecule diameter, m is its mass, g σ is the radial distribution function at contact, and F is the hard sphere correction factor. The ξ S , S is given by the recipe employed by Ruckenstein and Liu [23], and ξ S , P is proposed embodying the method of Brokaw [24]:
ξ S , S = 8 3   ρ n   σ   2   2 π   m   k B   T   0.4 T * 1.5
ξ S , P = 8 3   ρ n   σ   2   2 π   m   k B   T   δ   2 T * 1.5
where T   * is the reduced temperature and δ the Stockmayer parameter [24]. The sum of ξ S , S and ξ S , P is now expressed in terms of a fitting coefficient B = 0.4 + δ 2 :
ξ S , S + ξ S , P = 8 3   ρ n   σ   2   2 π   m   k B   T   B T   * 1.5
In this way, the Stockmayer parameter is eliminated from Equation (6) and the dipole moments are no longer required for the δ calculation, in opposition to the original work of Magalhães et al. [11]. This approach expands the model applicability, since dipole moments are not frequently available and their accurate estimation is not easy. This is especially true in systems with complex molecules, such as, for instance, astaxanthin and quercetin [25,26] that, in the case of the latter, exhibits 48 possible stable conformers with dipole moments varying from 0.35 to 9.87 Debye under vacuum [27].
The unary quantities of the previous expressions should be now replaced by the corresponding binary ones, giving rise to the core equation:
D 12   = k B   T 8 3   ρ n , 1   σ eff , 12 2   2 π   m 12   k B   T   g σ eff , 12 F 12 + B 12 T 12 * 1.5
where subscripts 1 and 2 denote solvent and solute, respectively, ρ n , 1 is the number density of the solvent, σ 12 , eff is the binary effective hard sphere diameter (where the Ben–Amotz–Herschbach expression [28] adopted for the effective calculation), m 12 is the reduced mass of the system, g σ eff , 12 is the pair radial distribution function at contact [29], F 12 is the hard sphere correction factor for D 12   [30] and T 12 * is the binary reduced temperature. For the calculation of the above-mentioned properties it is further required to know the critical volume ( V c ), the critical temperature ( T c ), and the mass ( m ) of both solute and solvent, and the mass density of the solvent ( ρ 1 ) at the desired temperature and pressure. Knowing the properties of the pure compounds one can estimate the previously mentioned properties by recurring to Equations (8)–(19),
σ LJ , j Å = 0.7889 × 10 8   V c , j cm 3   mol 1 1 / 3 ,       j = 1   or   2
ε LJ , j k B = T c , j K 1.2593   ,       j = 1   or   2
σ LJ , 12 = 1 k 12 σ LJ , 1 + σ LJ , 2 2
ε LJ , 12 k B = ε LJ , 1 k B ε LJ , 2 k B
T j * = T ε LJ , j / k B , j = 1 ,   2   or   12
σ eff , j = 1.1532   σ LJ , j 1 + 1.8975   T j * 1 / 6 , j = 1 ,   2   or   12
ρ n , 1 * = ρ n , 1   σ eff , 1 3
φ = π 6 ρ n , 1 *
g σ eff , 12 = 1 1 φ 3 1 φ + 2 φ 1 + σ eff , 1 / σ eff , 2 1 φ + φ 1 + σ eff , 1 / σ eff , 2
F 11 = 1 + 0.94605 ρ n , 1 * 1.5 + 1.4022 ρ n , 1 * 3 5.6898 ρ n , 1 * 5 + 2.6626 ρ n , 1 * 7
F 12 = F 11 + ρ n , 1 * 1.7 a ln σ eff , 2 / σ eff , 1 + b ln σ eff , 2 / σ eff , 1 2 + c ln m 2 / m 1 1 + ρ n , 1 * 3 d ln σ eff , 2 / σ eff , 1 2   with : a = 1.676382   ρ n , 1 * + 1.638561 b = 8.516830   ρ n , 1 * + 8.631536 c = 1.320347   ρ n , 1 * + 1.351067 d = 5.062546   ρ n , 1 * + 5.409662
m 12 = m 1 m 2 m 1 + m 2
where σ LJ , j is the LJ diameter of component j [23], ε LJ , j / k B is the LJ energy parameter of j [23], σ LJ , 12 and ε LJ , 12 / k B are the binary LJ parameters, T j * is the reduced temperature of j, σ eff , j is the effective hard sphere diameter of component j calculated by the Ben–Amotz–Herschbach expression [28], ρ n , 1 * is the reduced number density of the solvent, φ is the packing fraction of the solvent and F 11 is the correction factor for the self-diffusion coefficient of the solvent [23].
Besides the parameter B 12 explicit in Equation (7), a second fitting constant is now introduced in the model, namely, the binary interaction parameter k 12 embodied in the Lennard-Jones diameter combining rule (Equation (10)).

2.2. Parameters Optimization and Model Assessment

The optimization of the D 12 parameters ( k 12 and B 12 ) was performed using the Nelder-Mead simplex algorithm described in Lagarias et al. [31] and codified in the fminsearch function of Matlab R2017b [32], adopting AARD (Equation (1)) as objective function. The model performance was assessed in terms of AARD (%) and average relative deviation (ARD, %, Equation (20)). A flowchart of the optimization procedure can be observed in Figure 1.
ARD = 100 NDP i = 1 NDP D 12 , i calc D 12 , i exp D 12 , i exp

2.3. Database and Compounds Properties

The database utilized in this work consists of a total of 8812 data points from 553 systems which were divided into four subsets: (i) 177 systems with supercritical carbon dioxide SC-CO2 as solvent (NDP = 5028); (ii) 154 systems with nonpolar or weakly polar solvents excluding SC-CO2 (NDP = 1113); (iii) 88 systems with polar solvents excluding water (NDP = 1405); and (iv) 133 systems with water as solvent (NDP = 1266). All the diffusion data were taken from [15,16,17,18,25,26,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238].
The properties required for modeling, whenever not reported in the original articles, were calculated or retrieved from the literature. In general, densities and viscosities were taken from the NIST database [239] or calculated by appropriate equations from Yaws [240], Cibulka and Ziková [241], Cibulka et al. [242,243], Cibulka and Takagi [244], Przezdziecki and Sridhar [8], Viswanath et al. [245], Lucas [245,246], Assael et al. [247], Cano-Gómez et al. [248], and Pádua et al. [249]. For the particular case of SC-CO2 densities and viscosities were estimated by the correlations of Pitzer and Schreiber [250] and Altunin and Sakhabetdinov [251], respectively, and for water they were obtained from IAPWS-IF97 [252]. The properties of the pure compounds (i.e., molecular weight ( M j ), critical temperature ( T c , j ), and critical volume ( V c , j )) are provided in Supplementary Material (Table S1).
In general, the fitting results achieved were good. However, some systems/data points were excluded from the database because the data were outside the domain of application of the equations used to estimate F 11 and/or F 12 delivering negative values without physical meaning. This was the case for carbon disulfide [161], methanol [161] and 1-alkyl-3-methylimidazolium ionic liquids (i.e., [Bmim][bti], [Emim][bti], [Hmim][bti] and [Omim][bti]) [160] in acetonitrile, and for 9,10-dimethylanthracene in n-hexane at 298.15 K and 3500 bar [149]. Nevertheless, the exclusion of these points corresponds to only 0.52% of the eligible compiled data.

3. Results and Discussion

The model performance was evaluated in terms of AARD and ARD. The global results achieved by the model and the results for each subset of systems are presented in Table 1. The individual deviations obtained for each system are provided in Supplementary Material (Tables S2–S5).
Overall, the D 12 model offers excellent results with very low AARD and ARD values as evidenced in Table 1 and shown graphically in Figure 2. Altogether, for the 553 studied systems the global AARD is 3.43% and the global ARD is 0.13%. For the four subsets analyzed the AARD values are within 3.23% and 3.96%. As for the individual systems, the top three with the highest deviations correspond to carbon tetrabromide (CBr4) in n-hexane [149], pyrene (C16H10) in n-hexane [149], and potassium chloride (KCl) in water [97,100,117], with AARD values of 22.48%, 21.89% and 15.26%, respectively.
Generally, no bias was observed in any subset of systems as demonstrated by the ARD values of −0.36%, −0.31%, 0.16%, and 0.35% for the polar, non-polar, water, and SC-CO2 systems, respectively. These observations are further highlighted in Figure 1 where one confirms that only three systems exhibit ARD values above 10% or below −10%. Interestingly, these systems are the same as those mentioned above (in the AARD analysis) and present ARD values of −16.94%, −18.07% and −11.15%.
The calculated vs. experimental D 12 results illustrated in Figure 3 corroborate the previous AARD and ARD analysis, evidencing the very good performance of the D 12 model. The higher deviations observed for the SC-CO2 subset are further analyzed in Figure 4, where the relative deviations (RD) against the reduced number density of solvent, ρ n , 1 * , are plotted. As illustrated, the higher deviations tend to be found closer and below the critical density where accurate D 12 measurements are frequently difficult to carry out as well as their modeling; hence, such deviations may be expected in advance.
The experimental and calculated D 12 vs. ρ n , 1 * is presented in Figure 5 for various solutes and solvents at fixed temperature and pressure. In general, the results are accurately described by the new D 12 model. For the polar systems shown in Figure 5a (i.e., ethanol/propane (A) at 298.15 K, 323.15 K, and 348.15 K [217], ethyl acetate/quercetin (B) at 1 bar [25], and ethanol/palladium(II) acetylacetonate (C) at 1 bar [121]) an excellent representation can be observed especially for systems B and C. Regarding the subset of water as solvent (see Figure 5b), the comparison of the experimental and calculated diffusivities of methane (D) [53,54], ionic liquid [Bmim][PF6] (E) [45], alanine (F) [49], and α-cyclodextrin (G) [95], all at P = 1 bar, clearly emphasizes the wide range of applicability of the model. For the subset of non-polar and weakly polar solvents excluding SC-CO2 (see Figure 5c), it is observed that the model predicts D 12 for diverse systems and conditions, including n-octane/xenon (H) at 1 bar [125], n-hexane/ferrocene (I) at 313.15 K [122], and cyclohexane/acetone (J) at 1 bar and 160 bar [118]. Finally, Figure 5d illustrates the results for SC-CO2 as solvent, namely for ethanol (L) at 313.21 K [190] and eicosapentaenoic acid (K) at 313.15 K and 333.15 K [227], respectively. Notwithstanding the good results achieved for most systems, higher deviations are observed for ethanol at low CO2 density which correspond to D 12 measurements close to the critical point (see previous comment). Ultimately, it may be concluded that the D 12 model has a wide range of applicability enabling the calculation of diffusion coefficients of simple (e.g., monoatomic species such as xenon) and complex (e.g., α-cyclodextrin and ionic liquids such as [Bmim][PF6]) solutes in polar or non-polar dense solvents, under isothermal or isobaric conditions.
A program that allows the estimation of diffusivities using the present model can be found in the Supplementary Material along with instructions on its use.

4. Conclusions

In this work, an upgraded Rice and Gray-based correlation is proposed for the calculation of binary diffusivities of solutes in polar and non-polar solvents. The model embodies a combined and simplified Stockmeyer and Lennard-Jones potential contribution in D 12 but does not require the dipole moments of either solute or solvent. Moreover, the solvent normal boiling point and solvent molar volume at normal boiling point are also not necessary. Hence, the applicability of the new correlation is significantly extended in terms of chemical species.
The model validation was accomplished using the literature data for 553 polar and non-polar systems (8812 data points) involving diverse solvents and solutes. Overall, the model achieves very low deviations, with AARD = 3.43% and ARD = 0.13%, suggesting a consistent unbiased behavior. The database was divided into four subsets according to the nature of the solvent, namely polar solvents (excluding water), water, and non-polar and weakly polar solvents (excluding SC-CO2), and SC-CO2. Excellent results were obtained for all subsets with the exception of the low-density SC-CO2 region, i.e., near the critical point.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ma15186416/s1: Software; Table S1. Pure component data, compound name, chemical formula, CAS number, molecular weight, M , critical temperature, T c , and volume, V c ; Table S2. Polar solvents systems studied, number of data point (NDP), reduced number density range ( ρ n , 1 * range), absolute temperature range ( T range), binary interaction parameters ( k 12 and B 12 ), average absolute relative deviations (AARD), and source of the diffusion data; Table S3. Water solvent systems studied, number of data point (NDP), reduced number density range ( ρ n , 1 * range), absolute temperature range ( T range), binary interaction parameters ( k 12 and B 12 ), average absolute relative deviations (AARD), and source of the diffusion data; Table S4. Non-polar solvent systems studied, number of data point (NDP), reduced number density range ( ρ n , 1 * range), absolute temperature range ( T range), binary interaction parameters ( k 12 and B 12 ), average absolute relative deviations (AARD), and source of the diffusion data; Table S5. SC-CO2 solvent systems studied, number of data point (NDP), reduced number density range ( ρ n , 1 * range), absolute temperature range ( T range), binary interaction parameters ( k 12 and B 12 ), average absolute relative deviations (AARD), and source of the diffusion data.

Author Contributions

B.Z.: Methodology, investigation, writing—original draft. I.P.: Resources, writing—review & editing, formal analysis. J.R.B.G.: Supervision, resources, writing—review & editing. C.M.S.: Supervision, conceptualization, resources, writing—review & editing, funding acquisition, formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MCTES (PIDDAC). Bruno Zêzere thanks FCT for the PhD grant SFRH/BD/137751/2018.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Taylor, R.; Krishna, R. Multicomponent Mass Transfer; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
  2. Zêzere, B.; Portugal, I.; Gomes, J.R.B.; Silva, C.M. Revisiting Tracer Liu-Silva-Macedo Model for Binary Diffusion Coefficient Using the Largest Database of Liquid and Supercritical Systems. J. Supercrit. Fluids 2021, 168, 105073. [Google Scholar] [CrossRef]
  3. Wilke, C.R.; Chang, P. Correlation of Diffusion Coefficients in Dilute Solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
  4. Liu, H.; Silva, C.M.; Macedo, E.A. New Equations for Tracer Diffusion Coefficients of Solutes in Supercritical and Liquid Solvents Based on the Lennard-Jones Fluid Model. Ind. Eng. Chem. Res. 1997, 36, 246–252. [Google Scholar] [CrossRef]
  5. Magalhães, A.L.; Cardoso, S.P.; Figueiredo, B.R.; Da Silva, F.A.; Silva, C.M. Revisiting the Liu-Silva-Macedo Model for Tracer Diffusion Coefficients of Supercritical, Liquid, and Gaseous Systems. Ind. Eng. Chem. Res. 2010, 49, 7697–7700. [Google Scholar] [CrossRef]
  6. Dymond, J.H. Corrected Enskog Theory and the Transport Coefficients of Liquids. J. Chem. Phys. 1974, 60, 969–973. [Google Scholar] [CrossRef]
  7. Silva, C.M.; Liu, H. Modelling of Transport Properties of Hard Sphere Fluids and Related Systems, and Its Applications. In Theory and Simulation of Hard-Sphere Fluids and Related Systems; Springer: Berlin, Germany, 2008; pp. 383–492. [Google Scholar]
  8. Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill Book Company, Ed.; McGraw-Hill International Editions: New York, NY, USA, 1987. [Google Scholar]
  9. Millat, J.; Dymond, J.H.; Nieto de Castro, C.A. Transport Properties of Fluids-Their Correlation, Prediction and Estimation; Cambridge University Press: London, UK, 1996. [Google Scholar]
  10. Tyn, M.T.; Calus, W.F. Diffusion Coefficients in Dilute Binary Liquid Mixtures. J. Chem. Eng. Data 1975, 20, 106–109. [Google Scholar] [CrossRef]
  11. Magalhães, A.L.; Da Silva, F.A.; Silva, C.M. Tracer Diffusion Coefficients of Polar Systems. Chem. Eng. Sci. 2012, 73, 151–168. [Google Scholar] [CrossRef]
  12. Aniceto, J.P.S.; Zêzere, B.; Silva, C.M. Predictive Models for the Binary Diffusion Coefficient at Infinite Dilution in Polar and Nonpolar Fluids. Materials 2021, 14, 542. [Google Scholar] [CrossRef]
  13. Magalhães, A.L.; Lito, P.F.; Da Silva, F.A.; Silva, C.M. Simple and Accurate Correlations for Diffusion Coefficients of Solutes in Liquids and Supercritical Fluids over Wide Ranges of Temperature and Density. J. Supercrit. Fluids 2013, 76, 94–114. [Google Scholar] [CrossRef]
  14. Kong, C.Y.; Yakumaru, Y.; Funazukuri, T. Measurement and Correlation of Binary Diffusion Coefficients of Lithium Acetylacetonate in Supercritical Carbon Dioxide and in Liquid Ethanol. J. Supercrit. Fluids 2015, 104, 265–271. [Google Scholar] [CrossRef]
  15. Kong, C.Y.; Watanabe, K.; Funazukuri, T. Determination and Correlation of Infinite Dilution Binary Diffusion Coefficients for Aluminum Acetylacetonate in Supercritical and Liquid Fluids. Fluid Phase Equilib. 2015, 420, 83–88. [Google Scholar] [CrossRef]
  16. Funazukuri, T.; Yamasaki, T.; Taguchi, M.; Kong, C.Y. Measurement of Binary Diffusion Coefficient and Solubility Estimation for Dyes in Supercritical Carbon Dioxide by CIR Method. Fluid Phase Equilib. 2015, 420, 7–13. [Google Scholar] [CrossRef]
  17. Kong, C.Y.; Watanabe, K.; Funazukuri, T. Measurement and Correlation of the Diffusion Coefficients of Chromium(III) Acetylacetonate at Infinite Dilution in Supercritical Carbon Dioxide and in Liquid Ethanol. J. Chem. Thermodyn. 2017, 105, 86–93. [Google Scholar] [CrossRef]
  18. Kong, C.Y.; Sugiura, K.; Natsume, S.; Sakabe, J.; Funazukuri, T.; Miyake, K.; Okajima, I.; Badhulika, S.; Sako, T. Measurements and Correlation of Diffusion Coefficients of Ibuprofen in Both Liquid and Supercritical Fluids. J. Supercrit. Fluids 2020, 159, 104776. [Google Scholar] [CrossRef]
  19. Einstein, A. Über Die von Der Molekularkinetischen Theorie Der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef]
  20. Rice, S.A.; Gray, P. The Statistical Mechanics of Simple Liquids: An Introduction to the Theory of Equilibrium and Non-Equilibrium Phenomena; Interscience Publication: Hoboken, NJ, USA, 1995. [Google Scholar]
  21. Helfand, E. Theory of the Molecular Friction Constant. Phys. Fluids 1961, 4, 681. [Google Scholar] [CrossRef]
  22. O’Toole, J.T.; Dahler, J.S. Molecular Friction in Dilute Gases. J. Chem. Phys. 1960, 33, 1496–1504. [Google Scholar] [CrossRef]
  23. Ruckenstein, E.; Liu, H. Self-Diffusion in Gases and Liquids. Ind. Eng. Chem. Res. 1997, 36, 3927–3936. [Google Scholar] [CrossRef]
  24. Brokaw, R.S. Predicting Transport Properties of Dilute Gases. Ind. Eng. Chem. Process Des. Dev. 1969, 8, 240–253. [Google Scholar] [CrossRef]
  25. Zêzere, B.; Iglésias, J.; Portugal, I.; Gomes, J.R.B.; Silva, C.M. Diffusion of Quercetin in Compressed Liquid Ethyl Acetate and Ethanol. J. Mol. Liq. 2020, 324, 114714. [Google Scholar] [CrossRef]
  26. Zêzere, B.; Silva, J.M.; Portugal, I.; Gomes, J.R.B.; Silva, C.M. Measurement of Astaxanthin and Squalene Diffusivities in Compressed Liquid Ethyl Acetate by Taylor-Aris Dispersion Method. Sep. Purif. Technol. 2020, 234, 116046. [Google Scholar] [CrossRef]
  27. Brovarets’, O.O.; Hovorun, D.M. Conformational Diversity of the Quercetin Molecule: A Quantum-Chemical View. J. Biomol. Struct. Dyn. 2020, 38, 2817–2836. [Google Scholar] [CrossRef] [PubMed]
  28. Ben-Amotz, D.; Herschbach, D.R. Estimation of Effective Diameters for Molecular Fluids. J. Phys. Chem. 1990, 94, 1038–1047. [Google Scholar] [CrossRef]
  29. Mansoori, G.A.; Carnahan, N.F.; Starling, K.E.; Leland, T.W. Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres. J. Chem. Phys. 1971, 54, 1523–1525. [Google Scholar] [CrossRef]
  30. Magalhães, A.L.; Da Silva, F.A.; Silva, C.M. New Models for Tracer Diffusion Coefficients of Hard Sphere and Real Systems: Application to Gases, Liquids and Supercritical Fluids. J. Supercrit. Fluids 2011, 55, 898–923. [Google Scholar] [CrossRef]
  31. Lagarias, J.; Reeds, J.; Wright, M.; Wright, P. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
  32. Matlab 2017b; The MathWorks Inc.: Natick, MA, USA, 2017.
  33. Wong, C.-F. Diffusion Coefficients of Dissolved Gases in Liquids; University of Ottawa: Ottawa, ON, Canada, 1989. [Google Scholar]
  34. Funazukuri, T.; Hachisu, S.; Wakao, N. Measurement of Diffusion Coefficients of C18 Unsaturated Fatty Acid Methyl Esters, Naphthalene, and Benzene in Supercritical Carbon Dioxide by a Tracer Response Technique. Anal. Chem. 1989, 61, 118–122. [Google Scholar] [CrossRef]
  35. Debenedetti, P.G.; Reid, R.C. Diffusion and Mass Transfer in Supercritical Fluids. AIChE J. 1986, 32, 2034–2046. [Google Scholar] [CrossRef]
  36. Wells, T.; Foster, N.R.; Chaplin, R.P. Diffusion of Phenylacetic Acid and Vanillin in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1992, 31, 927–934. [Google Scholar] [CrossRef]
  37. Pizarro, C.; Suárez-Iglesias, O.; Medina, I.; Bueno, J.L. Molecular Diffusion Coefficients of Phenylmethanol, 1-Phenylethanol, 2-Phenylethanol, 2-Phenyl-1-Propanol, and 3-Phenyl-1-Propanol in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2008, 43, 469–476. [Google Scholar] [CrossRef]
  38. Silva, C.M.; Filho, C.A.; Quadri, M.B.; Macedo, E.A. Binary Diffusion Coefficients of α-Pinene and β-Pinene in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2004, 32, 167–175. [Google Scholar] [CrossRef]
  39. Vaz, R.V.; Magalhães, A.L.; Valente, A.A.; Silva, C.M. Measurement and Modeling of Tracer Diffusivities of α-Pinene in Supercritical CO2, and Analysis of Their Hydrodynamic and Free-Volume Behaviors. J. Supercrit. Fluids 2016, 107, 690–698. [Google Scholar] [CrossRef]
  40. Suárez, J.J.; Bueno, J.L.; Medina, I.; Dizy, J. Applications of supercritical chromatography-Determination of molecular diffusivity. Afinidad 1992, 49, 101–113. [Google Scholar]
  41. Kong, C.Y.; Withanage, N.R.W.; Funazukuri, T.; Kagei, S. Binary Diffusion Coefficients and Retention Factors for Long-Chain Triglycerides in Supercritical Carbon Dioxide by the Chromatographic Impulse Response Method. J. Chem. Eng. Data 2005, 50, 1635–1640. [Google Scholar] [CrossRef]
  42. Funazukuri, T.; Kong, C.Y.; Kagei, S. Infinite-Dilution Binary Diffusion Coefficient, Partition Ratio, and Partial Molar Volume for Ubiquinone CoQ10 in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2002, 41, 2812–2818. [Google Scholar] [CrossRef]
  43. Xu, B.; Nagashima, K.; DeSimone, J.M.; Johnson, C.S., Jr. Diffusion of Water in Liquid and Supercritical Carbon Dioxide: An NMR Study. J. Phys. Chem. A 2003, 107, 1–3. [Google Scholar] [CrossRef]
  44. Kopner, A.; Hamm, A.; Ellert, J.; Feist, R.; Schneider, G.M. Determination of Binary Diffusion Coefficients in Supercritical Chlorotrifluoromethane and Sulfurhexafluoride with Supercritical Fluid Chromatography (SFC). Chem. Eng. Sci. 1987, 42, 2213–2218. [Google Scholar] [CrossRef]
  45. Wong, C.-L.; Soriano, A.N.; Li, M.-H. Infinite Dilution Diffusion Coefficients of [Bmim]-Based Ionic Liquids in Water and Its Molar Conductivities. J. Taiwan Inst. Chem. Eng. 2009, 40, 77–83. [Google Scholar] [CrossRef]
  46. Wong, C.-L.; Soriano, A.N.; Li, M.-H. Diffusion Coefficients and Molar Conductivities in Aqueous Solutions of 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids. Fluid Phase Equilib. 2008, 271, 43–52. [Google Scholar] [CrossRef]
  47. Heintz, A.; Lehmann, J.K.; Schmidt, E.; Wandschneider, A. Diffusion Coefficients of Imidazolium Based Ionic Liquids in Aqueous Solutions. J. Solution Chem. 2009, 38, 1079–1083. [Google Scholar] [CrossRef]
  48. Gary-Bobo, C.; Weber, H.W. Diffusion of Alcohols and Amides in Water from 4 to 37. Deg. J. Phys. Chem. 1969, 73, 1155–1156. [Google Scholar] [CrossRef]
  49. Umecky, T.; Kuga, T.; Funazukuri, T. Infinite Dilution Binary Diffusion Coefficients of Several α-Amino Acids in Water over a Temperature Range from (293.2 to 333.2) K with the Taylor Dispersion Technique. J. Chem. Eng. Data 2006, 51, 1705–1710. [Google Scholar] [CrossRef]
  50. Umecky, T.; Omori, S.; Kuga, T.; Funazukuri, T. Effects of Hydroxyl Groups on Binary Diffusion Coefficients of α-Amino Acids in Dilute Aqueous Solutions. Fluid Phase Equilib. 2008, 264, 18–22. [Google Scholar] [CrossRef]
  51. Frank, M.J.W.; Kuipers, J.A.M.; van Swaaij, W.P.M. Diffusion Coefficients and Viscosities of CO2 + H2O, CO2 + CH3OH, NH3 + H2O, and NH3 + CH3OH Liquid Mixtures. J. Chem. Eng. Data 1996, 41, 297–302. [Google Scholar] [CrossRef]
  52. Mogi, N.; Sugai, E.; Fuse, Y.; Funazukuri, T. Infinite Dilution Binary Diffusion Coefficients for Six Sugars at 0.1 MPa and Temperatures from (273.2 to 353.2) K. J. Chem. Eng. Data 2007, 52, 40–43. [Google Scholar] [CrossRef]
  53. Maharajh, D. Solubility and Diffusion of Gases in Water; Simon Fraser University: Burnaby, BC, Canada, 1975. [Google Scholar]
  54. Witherspoon, P.A.; Bonoli, L. Correlation of Diffusion Coefficients for Paraffin, Aromatic, and Cycloparaffin Hydrocarbons in Water. Ind. Eng. Chem. Fundam. 1969, 8, 589–591. [Google Scholar] [CrossRef]
  55. Han, P.; Bartels, D.M. Temperature Dependence of Oxygen Diffusion in H2O and D2O. J. Phys. Chem. 1996, 100, 5597–5602. [Google Scholar] [CrossRef]
  56. Bonoli, L.; Witherspoon, P.A. Diffusion of Aromatic and Cycloparaffin Hydrocarbons in Water from 2 to 60.Deg. J. Phys. Chem. 1968, 72, 2532–2534. [Google Scholar] [CrossRef]
  57. Tominaga, T.; Yamamoto, S.; Takanaka, J.-I. Limiting Interdiffusion Coefficients of Benzene, Toluene, Ethylbenzene and Hexafluorobenzene in Water from 298 to 368 K. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 1984, 80, 941. [Google Scholar] [CrossRef]
  58. Tominaga, T.; Matsumoto, S.; Ishii, T. Limiting Interdiffusion of Some Aromatic Hydrocarbons in Water from 265 to 433 K. J. Phys. Chem. 1986, 90, 139–143. [Google Scholar] [CrossRef]
  59. Delgado, J.M.P.Q. Molecular Diffusion Coefficients of Organic Compounds in Water at Different Temperatures. J. Phase Equilibria Diffus. 2007, 28, 427–432. [Google Scholar] [CrossRef]
  60. Mutoru, J.W.; Leahy-Dios, A.; Firoozabadi, A. Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water. AIChE J. 2011, 57, 1617–1627. [Google Scholar] [CrossRef]
  61. Jähne, B.; Heinz, G.; Dietrich, W. Measurement of the Diffusion Coefficients of Sparingly Soluble Gases in Water. J. Geophys. Res. 1987, 92, 10767–10776. [Google Scholar] [CrossRef]
  62. Riele, M.J.M.T.; Snijder, E.D.; van Swaaij, W.P.M. Diffusion Coefficients at Infinite Dilution in Water and in N-Methylpyrrolidone. J. Chem. Eng. Data 1995, 40, 34–36. [Google Scholar] [CrossRef]
  63. Li, S.F.Y.; Ong, H.M. Infinite Dilution Diffusion Coefficients of Several Alcohols in Water. J. Chem. Eng. Data 1990, 35, 136–137. [Google Scholar] [CrossRef]
  64. Tominaga, T.; Matsumoto, S. Limiting Interdiffusion Coefficients of Some Hydroxylic Compounds in Water from 265 to 433 K. J. Chem. Eng. Data 1990, 35, 45–47. [Google Scholar] [CrossRef]
  65. Funazukuri, T.; Nishio, M. Infinite Dilution Binary Diffusion Coefficients of C5-Monoalcohols in Water in the Temperature Range from 273.2 K to 353.2 K at 0.1 MPa. J. Chem. Eng. Data 1999, 44, 73–76. [Google Scholar] [CrossRef]
  66. Okubo, Y.; Kong, C.Y.; Sakabe, J.; Funazukuri, T. Measurements of Infinite Dilution Binary Diffusion Coefficients of Acetylferrocene and 1,1′-Diacetylferrocene in Supercritical Carbon Dioxide and in Liquid Organic Solvents. J. Supercrit. Fluids 2021, 177, 105321. [Google Scholar] [CrossRef]
  67. Price, W.E.; Trickett, K.A.; Harris, K.R. Association of Caffeine in Aqueous Solution. Effects on Caffeine Intradiffusion. J. Chem. Soc. Faraday Trans. 1989, 85, 3281–3288. [Google Scholar] [CrossRef]
  68. Price, W.E. Tracer Caffeine Diffusion in Aqueous Solutions at 298 K. The Effect of Caffeine Self-Association. J. Chem. Soc. Faraday Trans. 1989, 85, 415–419. [Google Scholar] [CrossRef]
  69. Niesner, R.; Heintz, A. Diffusion Coefficients of Aromatics in Aqueous Solution. J. Chem. Eng. Data 2000, 45, 1121–1124. [Google Scholar] [CrossRef]
  70. Vivian, J.E.; King, C.J. Diffusivities of Slightly Soluble Gases in Water. AIChE J. 1964, 10, 220–221. [Google Scholar] [CrossRef]
  71. Ng, W.Y.; Walkley, J. Diffusion of Gases in Liquids: The Constant Size Bubble Method. Can. J. Chem. 1969, 47, 1075–1077. [Google Scholar] [CrossRef]
  72. Maharajh, D.M.; Walkley, D.J. The Temperature Dependence of the Diffusion Coefficients of Ar, CO2, CH4, CH3Cl, CH3Br, and CHCl2F in Water. Can. J. Chem. 1973, 51, 944–952. [Google Scholar] [CrossRef]
  73. Pratt, K.C.; Slater, D.H.; Wakeham, W.A. A Rapid Method for the Determination of Diffusion Coefficients of Gases in Liquids. Chem. Eng. Sci. 1973, 28, 1901–1903. [Google Scholar] [CrossRef]
  74. Bodnar, L.H.; Himmelblau, D.M. Continuous Measurement of Diffusion Coefficients of Gases in Liquids Using Glass Scintillators. Int. J. Appl. Radiat. Isot. 1962, 13, 1–6. [Google Scholar] [CrossRef]
  75. Woods, D.R. Mass Transfer Between a Liquid Jet and a Countercurrent Gas Stream; University of Wisconsin-Madison: Madison, WI, USA, 1961. [Google Scholar]
  76. Ferrell, R.T.; Himmelblau, D.M. Diffusion Coefficients of Nitrogen and Oxygen in Water. J. Chem. Eng. Data 1967, 12, 111–115. [Google Scholar] [CrossRef]
  77. Sun, C.K.J.; Chen, S.H. Tracer Diffusion in Dense Ethanol: A Generalized Correlation for Nonpolar and Hydrogen-Bonded Solvents. AIChE J. 1986, 32, 1367–1371. [Google Scholar] [CrossRef]
  78. Thomas, W.J.; Adams, M.J. Measurement of the Diffusion Coefficients of Carbon Dioxide and Nitrous Oxide in Water and Aqueous Solutions of Glycerol. Trans. Faraday Soc. 1965, 61, 668–673. [Google Scholar] [CrossRef]
  79. Tham, M.J.; Bhatia, K.K.; Gubbins, K.F. Steady-State Method for Studying Diffusion of Gases in Liquids. Chem. Eng. Sci. 1967, 22, 309–311. [Google Scholar] [CrossRef]
  80. Sovová, H.; Procházka, J. A New Method of Measurement of Diffusivities of Gases in Liquids. Chem. Eng. Sci. 1976, 31, 1091–1097. [Google Scholar] [CrossRef]
  81. Himmelblau, D.M. Diffusion of Dissolved Gases in Liquids. Chem. Rev. 1964, 64, 527–550. [Google Scholar] [CrossRef]
  82. Peaceman, D.W. Liquid-Side Resistance in Gas Absorption with and without Chemical Reaction; Massachusetts Institute of Technology: Cambridge, MA, USA, 1952. [Google Scholar]
  83. Ringbom, A. Über Die Bestimmung Der Diffusionskoeffizienten von Gasen in Flüssigkeiten. Zeitschrift Für Anorg. Und Allg. Chem. 1938, 238, 94–102. [Google Scholar] [CrossRef]
  84. Norman, W.S.; Sammak, F.Y.Y. Gas Absorption in a Packed Column-Part I: The Effect of Liquid Viscosity on the Mass Transfer Coefficient. Trans. Inst. Chem. Eng. 1963, 41, 109–116. [Google Scholar]
  85. Onda, K.; Okamoto, T.; Yamaji, Y. Measurement of the Diffusivities of CO2 in Liquids by Liquid Jets. Kagaku Kogaku 1960, 24, 918–925. [Google Scholar] [CrossRef]
  86. Nijsing, R.A.T.O.; Hendriksz, R.H.; Kramers, H. Absorption of CO2 in Jets and Falling Films of Electrolyte Solutions, with and without Chemical Reaction. Chem. Eng. Sci. 1959, 10, 88–104. [Google Scholar] [CrossRef]
  87. Hüfner, G. Ueber Die Bestimmung der Diffusions Coefficienten Einiger Gase Für Wasser. Ann. Phys. 1896, 296, 134–168. [Google Scholar] [CrossRef]
  88. Tominaga, T.; Matsumoto, S. Diffusion of Polar and Nonpolar Molecules in Water and Ethanol. Bull. Chem. Soc. Jpn. 1990, 63, 533–537. [Google Scholar] [CrossRef]
  89. Stefan, J. Über Die Diffusion Der Kohlensäure Durch Wasser Und Alkohol. Sitzungsberichte Kais. Akad. Wiss. Math. Klasse II Abtheilung 1878, 77, 371–409. [Google Scholar]
  90. Tammann, G.; Jessen, V. Über Die Diffusionskoeffizienten von Gasen in Wasser Und Ihre Temperaturabhängigkeit. Zeitschrift Für Anorg. Und Allg. Chem. 1929, 179, 125–144. [Google Scholar] [CrossRef]
  91. Tamimi, A.; Rinker, E.B.; Sandall, O.C. Diffusion Coefficients for Hydrogen Sulfide, Carbon Dioxide, and Nitrous Oxide in Water over the Temperature Range 293–368 K. J. Chem. Eng. Data 1994, 39, 330–332. [Google Scholar] [CrossRef]
  92. Versteeg, G.F.; Van Swaaij, W.P.M. Solubility and Diffusivity of Acid Gases (Carbon Dioxide, Nitrous Oxide) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1988, 33, 29–34. [Google Scholar] [CrossRef]
  93. Cadogan, S.P.; Maitland, G.C.; Trusler, J.P.M. Diffusion Coefficients of CO2 and N2 in Water at Temperatures between 298.15 K and 423.15 K at Pressures up to 45 MPa. J. Chem. Eng. Data 2014, 59, 519–525. [Google Scholar] [CrossRef]
  94. Mazarei, A.F.; Sandall, O.C. Diffusion Coefficients for Helium, Hydrogen, and Carbon Dioxide in Water at 25 °C. AIChE J. 1980, 26, 154–157. [Google Scholar] [CrossRef]
  95. Ribeiro, A.C.F.; Valente, A.J.M.; Santos, C.I.A.V.; Prazeres, P.M.R.A.; Lobo, V.M.M.; Burrows, H.D.; Esteso, M.A.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of α-Cyclodextrin, 2-Hydroxypropyl-α-Cyclodextrin, and 2-Hydroxypropyl-β-Cyclodextrin at Temperatures from (298.15 to 312.15) K. J. Chem. Eng. Data 2007, 52, 586–590. [Google Scholar] [CrossRef]
  96. Ribeiro, A.C.F.; Leaist, D.G.; Esteso, M.A.; Lobo, V.M.M.; Valente, A.J.M.; Santos, C.I.A.V.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of β-Cyclodextrin at Temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 2006, 51, 1368–1371. [Google Scholar] [CrossRef]
  97. Snijder, E.D.; te Riele, M.J.M.; Versteeg, G.F.; van Swaaij, W.P.M. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1993, 38, 475–480. [Google Scholar] [CrossRef]
  98. Wang, M.H.; Soriano, A.N.; Caparanga, A.R.; Li, M.-H. Mutual Diffusion Coefficients of Aqueous Solutions of Some Glycols. Fluid Phase Equilib. 2009, 285, 44–49. [Google Scholar] [CrossRef]
  99. Lin, I.-H.; Tan, C.-S. Diffusion of Benzonitrile in CO2-Expanded Ethanol. J. Chem. Eng. Data 2008, 53, 1886–1891. [Google Scholar] [CrossRef]
  100. Secuianu, C.; Maitland, G.C.; Trusler, J.P.M.; Wakeham, W.A. Mutual Diffusion Coefficients of Aqueous KCl at High Pressures Measured by the Taylor Dispersion Method. J. Chem. Eng. Data 2011, 56, 4840–4848. [Google Scholar] [CrossRef]
  101. Kuo, C.-C.; Li, M.-H. Measurements of Mutual Diffusion Coefficients of Binary Systems: Aquous N,N-Diethylethanolamine, N,N-Dimethylethanolamine, Monoisopropanolamine, Piperazine, and Sulfolane Solutions. Master’s Thesis, Chung Yuan Christian University, Jhongli, Taiwan, 2005. [Google Scholar]
  102. Chang, L.-C.; Lin, T.-I.; Li, M.-H. Mutual Diffusion Coefficients of Some Aqueous Alkanolamines Solutions. J. Chem. Eng. Data 2005, 50, 77–84. [Google Scholar] [CrossRef]
  103. Wang, M.H.; Soriano, A.N.; Caparanga, A.R.; Li, M.-H. Binary Mutual Diffusion Coefficient of Aqueous Solutions of Propylene Glycol and Dipropylene Glycol. J. Taiwan Inst. Chem. Eng. 2010, 41, 279–285. [Google Scholar] [CrossRef]
  104. Kuo, C.-C.; Li, M.H. Diffusion Coefficients of Aqueous N,N-Diethylethanolamine, N,N-Dimethylethanolamine, Monoisopropanolamine, Piperazine, and Sulfolane Solutions. J. Chin. Inst. Chem. Eng. 2006, 37, 341–353. [Google Scholar]
  105. Witherspoon, P.A.; Saraf, D.N. Diffusion of Methane, Ethane, Propane and n-Butane in Water from 25 to 43°. J. Phys. Chem. 1965, 69, 3752–3755. [Google Scholar] [CrossRef]
  106. Ribeiro, A.C.F.; Ortona, O.; Simões, S.M.N.; Santos, C.I.A.V.; Prazeres, P.M.R.A.; Valente, A.J.M.; Lobo, V.M.M.; Burrows, H.D. Binary Mutual Diffusion Coefficients of Aqueous Solutions of Sucrose, Lactose, Glucose, and Fructose in the Temperature Range from (298.15 to 328.15) K. J. Chem. Eng. Data 2006, 51, 1836–1840. [Google Scholar] [CrossRef]
  107. Yui, K.; Yamazaki, N.; Funazukuri, T. Infinite Dilution Binary Diffusion Coefficients for Compounds Derived from Biomass in Water at 0.1 MPa and Temperatures from (298.2 to 353.2) K. J. Chem. Eng. Data 2013, 58, 183–186. [Google Scholar] [CrossRef]
  108. Boerboom, A.J.; Kleyn, G. Diffusion Coefficients of Noble Gases in Water. J. Chem. Phys. 1969, 50, 1086–1088. [Google Scholar] [CrossRef]
  109. Haimour, N.; Sandall, O.C. Molecular Diffusivity of Hydrogen Sulfide in Water. J. Chem. Eng. Data 1984, 29, 20–22. [Google Scholar] [CrossRef]
  110. Suárez-Iglesias, O.; Medina, I.; Pizarro, C.; Bueno, J.L. Diffusion of Benzyl Acetate, 2-Phenylethyl Acetate, 3-Phenylpropyl Acetate, and Dibenzyl Ether in Mixtures of Carbon Dioxide and Ethanol. Ind. Eng. Chem. Res. 2007, 46, 3810–3819. [Google Scholar] [CrossRef]
  111. Derlacki, Z.J.; Easteal, A.J.; Edge, A.V.J.; Woolf, L.A.; Roksandic, Z. Diffusion Coefficients of Methanol and Water and the Mutual Diffusion Coefficient in Methanol-Water Solutions at 278 and 298 K. J. Phys. Chem. 1985, 89, 5318–5322. [Google Scholar] [CrossRef]
  112. Matthews, M.A.; Akgerman, A. Infinite Dilution Diffusion Coefficients of Methanol and 2-Propanol in Water. J. Chem. Eng. Data 1988, 33, 122–123. [Google Scholar] [CrossRef]
  113. Derks, P.W.J.; Hamborg, E.S.; Hogendoorn, J.A.; Niederer, J.P.M.; Versteeg, G.F. Densities, Viscosities, and Liquid Diffusivities in Aqueous Piperazine and Aqueous (Piperazine + N-Methyldiethanolamine) Solutions. J. Chem. Eng. Data 2008, 53, 1179–1185. [Google Scholar] [CrossRef]
  114. Hamborg, E.S.; Derks, P.W.J.; Kersten, S.R.A.; Niederer, J.P.M.; Versteeg, G.F. Diffusion Coefficients of N2O in Aqueous Piperazine Solutions Using the Taylor Dispersion Technique from (293 to 333) K and (0.3 to 1.4) Mol·dm −3. J. Chem. Eng. Data 2008, 53, 1462–1466. [Google Scholar] [CrossRef]
  115. Wise, D.L.; Houghton, G. The Diffusion Coefficients of Ten Slightly Soluble Gases in Water at 10–60 °C. Chem. Eng. Sci. 1966, 21, 999–1010. [Google Scholar] [CrossRef]
  116. Plugatyr, A.; Svishchev, I.M. Molecular Diffusivity of Phenol in Sub- and Supercritical Water: Application of the Split-Flow Taylor Dispersion Technique. Jounal Phys. Chem. B 2011, 115, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
  117. Castillo, R.; Garza, C. Temperature Dependence of the Mutual Diffusion Coefficients in Aqueous Solutions of Alkali Metal Chlorides. Int. J. Thermophys. 1993, 14, 1145–1152. [Google Scholar] [CrossRef]
  118. Funazukuri, T.; Nishimoton; Wakao, N. Binary Diffusion Coefficients of Organic Compounds in Hexane, Dodecane, and Cyclohexane at 303.2–333.2 K and 16.0 MPa. J. Chem. Eng. Data 1994, 39, 911–915. [Google Scholar] [CrossRef]
  119. Chen, S.H.; Davis, H.T.; Evans, D.F. Tracer Diffusion in Polyatomic Liquids. II. J. Chem. Phys. 1981, 75, 2540–2544. [Google Scholar] [CrossRef]
  120. Sun, C.K.J.; Chen, S.H. Tracer Diffusion of Aromatic Hydrocarbons in Liquid Cyclohexane up to Its Critical Temperature. AIChE J. 1985, 31, 1510–1515. [Google Scholar] [CrossRef]
  121. Zêzere, B.; Cordeiro, J.; Leite, J.; Magalhães, A.L.; Portugal, I.; Silva, C.M. Diffusivities of Metal Acetylacetonates in Liquid Ethanol and Comparison with the Transport Behavior in Supercritical Systems. J. Supercrit. Fluids 2019, 143, 259–267. [Google Scholar] [CrossRef]
  122. Toriurmi, M.; Katooka, R.; Yui, K.; Funazukuri, T.; Kong, C.Y.; Kagei, S. Measurements of Binary Diffusion Coefficients for Metal Complexes in Organic Solvents by the Taylor Dispersion Method. Fluid Phase Equilib. 2010, 297, 62–66. [Google Scholar] [CrossRef]
  123. Chen, B.H.C.; Sun, C.K.J.; Chen, S.H. Hard Sphere Treatment of Binary Diffusion in Liquid at High Dilution up to the Critical Temperature. J. Chem. Phys. 1985, 82, 2052–2055. [Google Scholar] [CrossRef]
  124. Sun, C.K.J.; Chen, S.H. Tracer Diffusion of Aromatic Hydrocarbons in N-Hexane up to the Supercritical Region. Chem. Eng. Sci. 1985, 40, 2217–2224. [Google Scholar]
  125. Chen, S.H.; Davis, H.T.; Evans, D.F. Tracer Diffusion in Polyatomic Liquids. III. J. Chem. Phys. 1982, 77, 2540–2544. [Google Scholar] [CrossRef]
  126. Chen, H.C.; Chen, S.H. Tracer Diffusion of Crown Ethers in N-Decane and n-Tetradecane: An Improved Correlation for Binary Systems Involving Normal Alkanes. Ind. Eng. Chem. Fundam. 1985, 24, 187–192. [Google Scholar] [CrossRef]
  127. Pollack, G.L.; Kennan, R.P.; Himm, J.F.; Stump, D.R. Diffusion of Xenon in Liquid Alkanes: Temperature Dependence Measurements with a New Method. Stokes--Einstein and Hard Sphere Theories. J. Chem. Phys. 1990, 92, 625–630. [Google Scholar] [CrossRef]
  128. Sun, C.K.J.; Chen, S.H. Diffusion of Benzene, Toluene, Naphthalene, and Phenanthrene in Supercritical Dense 2,3-Dimethylbutane. AIChE J. 1985, 31, 1904–1910. [Google Scholar] [CrossRef]
  129. Matthews, M.A.; Rodden, J.B.; Akgerman, A. High-Temperature Diffusion of Hydrogen, Carbon Monoxide, and Carbon Dioxide in Liquid n-Heptane, n-Dodecane, and n-Hexadecane. J. Chem. Eng. Data 1987, 32, 319–322. [Google Scholar] [CrossRef]
  130. Matthews, M.A.; Akgerman, A. Diffusion Coefficients for Binary Alkane Mixtures to 573 K and 3.5 MPa. AIChE J. 1987, 33, 881–885. [Google Scholar] [CrossRef]
  131. Rodden, J.B.; Erkey, C.; Akgerman, A. High-Temperature Diffusion, Viscosity, and Density Measurements in n-Eicosane. J. Chem. Eng. Data 1988, 33, 344–347. [Google Scholar] [CrossRef]
  132. Zêzere, B.; Magalhães, A.L.; Portugal, I.; Silva, C.M. Diffusion Coefficients of Eucalyptol at Infinite Dilution in Compressed Liquid Ethanol and in Supercritical CO2/Ethanol Mixtures. J. Supercrit. Fluids 2018, 133, 297–308. [Google Scholar] [CrossRef]
  133. Noel, J.M.; Erkey, C.; Bukur, D.B.; Akgerman, A. Infinite Dilution Mutual Diffusion Coefficients of 1-Octene and 1-Tetradecene in near-Critical Ethane and Propane. J. Chem. Eng. Data 1994, 39, 920–921. [Google Scholar] [CrossRef]
  134. Grushka, E.; Kikta, E.J. Diffusion in Liquids. II. Dependence of Diffusion Coefficients on Molecular Weight and on Temperature. J. Am. Chem. Soc. 1976, 98, 643–648. [Google Scholar] [CrossRef]
  135. Qian, R.Y.; Fan, Y.Q.; Shi, M.R.; Shi, J. Predictive Equation of Tracer Liquid Diffusion Coefficient from Viscosity. Chin. J. Chem. Eng. 1996, 4, 203–208. [Google Scholar]
  136. Lo, H.Y. Diffusion Coefficients in Binary Liquid N-Alkane Systems. J. Chem. Eng. Data 1974, 19, 236–241. [Google Scholar] [CrossRef]
  137. Bidlack, D.L.; Anderson, D.K. Mutual Diffusion in Nonideal Nonassociating Liquid Systems. J. Phys. Chem. 1964, 68, 3790–3794. [Google Scholar] [CrossRef]
  138. Alizadeh, A.A.; Wakeham, W.A. Mutual Diffusion Coefficients for Binary Mixtures of Normal Alkanes. Int. J. Thermophys. 1982, 3, 307–323. [Google Scholar] [CrossRef]
  139. Padrel de Oliveira, C.M.; Fareleira, J.M.N.A.; Nieto de Castro, C.A. Mutual Diffusivity in Binary Mixtures of N-Heptane with n-Hexane Isomers. Int. J. Thermophys. 1989, 10, 973–982. [Google Scholar] [CrossRef]
  140. Li, S.F.Y.; Yue, L.S. Composition Dependence of Binary Diffusion Coefficients in Alkane Mixtures. Int. J. Thermophys. 1990, 11, 537–554. [Google Scholar] [CrossRef]
  141. Li, S.F.Y.; Wakeham, W.A. Mutual Diffusion Coefficients for Two N-Octane Isomers in n-Heptane. Int. J. Thermophys. 1989, 10, 995–1003. [Google Scholar] [CrossRef]
  142. Matthews, M.A.; Rodden, J.B.; Akgerman, A. High-Temperature Diffusion, Viscosity, and Density Measurements in n-Hexadecane. J. Chem. Eng. Data 1987, 32, 317–319. [Google Scholar] [CrossRef]
  143. Leite, J.; Magalhães, A.L.; Valente, A.A.; Silva, C.M. Measurement and Modelling of Tracer Diffusivities of Gallic Acid in Liquid Ethanol and in Supercritical CO2 Modified with Ethanol. J. Supercrit. Fluids 2018, 131, 130–139. [Google Scholar] [CrossRef]
  144. Dymond, J.H.; Woolf, L.A. Tracer Diffusion of Organic Solutes in N-Hexane at Pressures up to 400 MPa. J. Chem. Soc. Faraday Trans. 1982, 78, 991–1000. [Google Scholar] [CrossRef]
  145. Safi, A.; Nicolas, C.; Neau, E.; Chevalier, J.L. Measurement and Correlation of Diffusion Coefficients of Aromatic Compounds at Infinite Dilution in Alkane and Cycloalkane Solvents. J. Chem. Eng. Data 2007, 52, 977–981. [Google Scholar] [CrossRef]
  146. Leffler, J.; Cullinan, H.T. Variation of Liquid Diffusion Coefficients with Composition. Dilute Ternary Systems. Ind. Eng. Chem. Fundam. 1970, 9, 88–93. [Google Scholar] [CrossRef]
  147. Harris, K.R.; Pua, C.K.N.; Dunlop, P.J. Mutual and Tracer Diffusion Coefficients and Frictional Coefficients for Systems Benzene-Chlorobenzene, Benzene-n-Hexane, and Benzene-n-Heptane at 25 °C. J. Phys. Chem. 1970, 74, 3518–3529. [Google Scholar] [CrossRef]
  148. Awan, M.A.; Dymond, J.H. Transport Properties of Nonelectrolyte Liquid Mixtures. X. Limiting Mutual Diffusion Coefficients of Fluorinated Benzenes in n-Hexane. Int. J. Thermophys. 1996, 17, 759–769. [Google Scholar] [CrossRef]
  149. Okamoto, M. Diffusion Coefficients Estimated by Dynamic Fluorescence Quenching at High Pressure: Pyrene, 9,10-Dimethylanthracene, and Oxygen in n-Hexane. Int. J. Thermophys. 2002, 23, 421–435. [Google Scholar] [CrossRef]
  150. Bidlack, D.L.; Kett, T.K.; Kelly, C.M.; Anderson, D.K. Diffusion in the Solvents Hexane and Carbon Tetrachloride. J. Chem. Eng. Data 1969, 14, 342–343. [Google Scholar] [CrossRef]
  151. Grushka, E.; Kikta, E.J. Extension of the Chromatographic Broadening Method of Measuring Diffusion Coefficients to Liquid Systems. I. Diffusion Coefficients of Some Alkylbenzenes in Chloroform. J. Phys. Chem. 1974, 78, 2297–2301. [Google Scholar] [CrossRef]
  152. Holmes, J.T.; Olander, D.R.; Wilke, C.R. Diffusion in Mixed Solvents. AIChE J. 1962, 8, 646–649. [Google Scholar] [CrossRef]
  153. Fan, Y.Q.; Qian, R.Y.; Shi, M.R.; Shi, J. Infinite Dilution Diffusion Coefficients of Several Aromatic Hydrocarbons in Octane and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1995, 40, 1053–1055. [Google Scholar] [CrossRef]
  154. Snijder, E.D.; te Riele, M.J.M.; Versteeg, G.F.; van Swaaij, W.P.M. Diffusion Coefficients of CO, CO2, N2O, and N2 in Ethanol and Toluene. J. Chem. Eng. Data 1995, 40, 37–39. [Google Scholar] [CrossRef]
  155. Moore, J.W.; Wellek, R.M. Diffusion Coefficients of N-Heptane and n-Decane in n-Alkanes and n-Alcohols at Several Temperatures. J. Chem. Eng. Data 1974, 19, 136–140. [Google Scholar] [CrossRef]
  156. Márquez, N.; Kreutzer, M.T.; Makkee, M.; Moulijn, J.A. Infinite Dilution Binary Diffusion Coefficients of Hydrotreating Compounds in Tetradecane in the Temperature Range from (310 to 475) K. J. Chem. Eng. Data 2008, 53, 439–443. [Google Scholar] [CrossRef]
  157. Kong, C.Y.; Watanabe, K.; Funazukuri, T. Diffusion Coefficients of Phenylbutazone in Supercritical CO2 and in Ethanol. J. Chromatogr. A 2013, 1279, 92–97. [Google Scholar] [CrossRef]
  158. Pratt, K.C.; Wakeham, W.A. The Mutual Diffusion Coefficient of Ethanol-Water Mixtures: Determination by a Rapid, New Method. Proc. R. Soc. London A 1974, 336, 393–406. [Google Scholar]
  159. Heintz, A.; Ludwig, R.; Schmidt, E. Limiting Diffusion Coefficients of Ionic Liquids in Water and Methanol: A Combined Experimental and Molecular Dynamics Study. Phys. Chem. Chem. Phys. 2011, 13, 3268–3273. [Google Scholar] [CrossRef]
  160. Sarraute, S.; Gomes, M.F.C.; Pádua, A.A.H. Diffusion Coefficients of 1-Alkyl-3-Methylimidazolium Ionic Liquids in Water, Methanol, and Acetonitrile at Infinite Dilution. J. Chem. Eng. Data 2009, 54, 2389–2394. [Google Scholar] [CrossRef]
  161. Hurle, R.L.; Woolf, L.A. Tracer Diffusion in Methanol and Acetonitrile under Pressure. J. Chem. Soc. Faraday Trans. 1982, 78, 2921–2928. [Google Scholar] [CrossRef]
  162. Sun, C.K.J.; Chen, S.H. Tracer Diffusion in Dense Methanol and 2-Propanol up to Supercritical Region: Understanding of Solvent Molecular Association and Development of an Empirical Correlation. Ind. Eng. Chem. Res. 1987, 26, 815–819. [Google Scholar] [CrossRef]
  163. Liu, Q.; Takemura, F.; Yabe, A. Solubility and Diffusivity of Carbon Monoxide in Liquid Methanol. J. Chem. Eng. Data 1996, 41, 589–592. [Google Scholar] [CrossRef]
  164. Lin, I.-H.; Tan, C.-S. Measurement of Diffusion Coefficients of P-Chloronitrobenzene in CO2-Expanded Methanol. J. Supercrit. Fluids 2008, 46, 112–117. [Google Scholar] [CrossRef]
  165. Funazukuri, T.; Sugihara, T.; Yui, K.; Ishii, T.; Taguchi, M. Measurement of Infinite Dilution Diffusion Coefficients of Vitamin K3 in CO2 Expanded Methanol. J. Supercrit. Fluids 2016, 108, 19–25. [Google Scholar] [CrossRef]
  166. Lee, Y.E.; Li, F.Y. Binary Diffusion Coefficients of the Methanol Water System in the Temperature Range 30–40 °C. J. Chem. Eng. Data 1991, 36, 240–243. [Google Scholar] [CrossRef]
  167. Pratt, K.C.; Wakeham, W.A. The Mutual Diffusion Coefficient for Binary Mixtures of Water and the Isomers of Propanol. Proc. R. Soc. Lond. A 1975, 342, 401–419. [Google Scholar]
  168. Funazukuri, T.; Kong, C.Y.; Kagei, S. Binary Diffusion Coefficients of Acetone in Carbon Dioxide at 308.2 and 313.2 K in the Pressure Range from 7.9 to 40 MPa. Int. J. Thermophys. 2000, 21, 651–669. [Google Scholar] [CrossRef]
  169. Sassiat, P.R.; Mourier, P.; Caude, M.H.; Rosset, R.H. Measurement of Diffusion Coefficients in Supercritical Carbon Dioxide and Correlation with the Equation of Wilke and Chang. Anal. Chem. 1987, 59, 1164–1170. [Google Scholar] [CrossRef]
  170. Funazukuri, T.; Kong, C.Y.; Kagei, S. Infinite-Dilution Binary Diffusion Coefficients of 2-Propanone, 2-Butanone, 2-Pentanone, and 3-Pentanone in CO2. Int. J. Thermophys. 2000, 21, 1279–1290. [Google Scholar] [CrossRef]
  171. Kong, C.Y.; Funazukuri, T.; Kagei, S. Chromatographic Impulse Response Technique with Curve Fitting to Measure Binary Diffusion Coefficients and Retention Factors Using Polymer-Coated Capillary Columns. J. Chromatogr. A 2004, 1035, 177–193. [Google Scholar] [CrossRef]
  172. Nishiumi, H.; Fujita, M.; Agou, K. Diffusion of Acetone in Supercritical Carbon Dioxide. Fluid Phase Equilib. 1996, 117, 356–363. [Google Scholar] [CrossRef]
  173. Shenai, V.M.; Hamilton, B.L.; Matthews, M.A. Diffusion in Liquid and Supercritical Fluid Mixtures. In Supercritical Fluid Engineering Science-Fundamentals and Applications; Kiran, E., Brennecke, J.F., Eds.; American Chemical Society: Washington, WA, USA, 1992; pp. 92–103. [Google Scholar]
  174. Dahmen, N.; Kordikowski, A.; Schneider, G.M. Determination of Binary Diffusion Coefficients of Organic Compounds in Supercritical Carbon Dioxide by Supercritical Fluid Chromatography. J. Chromatogr. A 1990, 505, 169–178. [Google Scholar] [CrossRef]
  175. Suárez-Iglesias, O.; Medina, I.; Pizarro, C.; Bueno, J.L. Diffusion Coefficients of 2-Fluoroanisole, 2-Bromoanisole, Allylbenzene and 1,3-Divinylbenzene at Infinite Dilution in Supercritical Carbon Dioxide. Fluid Phase Equilib. 2007, 260, 279–286. [Google Scholar] [CrossRef]
  176. González, L.M.; Suárez-Iglesias, O.; Bueno, J.L.; Pizarro, C.; Medina, I. Limiting Binary Diffusivities of Aniline, Styrene, and Mesitylene in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2007, 52, 1286–1290. [Google Scholar] [CrossRef]
  177. González, L.M.; Bueno, J.L.; Medina, I. Determination of Binary Diffusion Coefficients of Anisole, 2,4-Dimethylphenol, and Nitrobenzene in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2001, 40, 3711–3716. [Google Scholar] [CrossRef]
  178. Abaroudi, K. Limpieza de Matrices Sólidas Porosas de Interés Medioambiental Con Fluidos Supercríticos; Universidad Politécnica de Catalunã: Barcelona, Spain, 2001. [Google Scholar]
  179. Funazukuri, T.; Kong, C.Y.; Kikuchi, T.; Kagei, S. Measurements of Binary Diffusion Coefficient and Partition Ratio at Infinite Dilution for Linoleic Acid and Arachidonic Acid in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2003, 48, 684–688. [Google Scholar] [CrossRef]
  180. Han, Y.S.; Yang, Y.W.; Wu, P.D. Binary Diffusion Coefficients of Arachidonic Acid Ethyl Ester, Cis-5,8,11,14,17-Eicosapentaenoic Acid Ethyl Ester, and Cis-4,7,10,13,16,19-Docosahexanenoic Acid Ethyl Ester in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2007, 52, 555–559. [Google Scholar] [CrossRef]
  181. Liong, K.K.; Wells, P.A.; Foster, N.R. Diffusion Coefficients of Long-Chain Esters in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1991, 30, 1329–1335. [Google Scholar] [CrossRef]
  182. Filho, C.A.; Silva, C.M.; Quadri, M.B.; Macedo, E.A. Infinite Dilution Diffusion Coefficients of Linalool and Benzene in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2002, 47, 1351–1354. [Google Scholar] [CrossRef]
  183. Swaid, I.; Schneider, G.M. Determination of Binary Diffusion Coefficients of Benzene and Some Alkylbenzenes in Supercritical CO2 between 308 and 328 K in the Pressure Range 80 to 160 Bar with Supercritical Fluid Chromatography (SFC). Ber. Bunsenges. Phys. Chem. Chem. 1979, 83, 969–974. [Google Scholar] [CrossRef]
  184. Suárez, J.J.; Bueno, J.L.; Medina, I. Determination of Binary Diffusion Coefficients of Benzene and Derivatives in Supercritical Carbon Dioxide. Chem. Eng. Sci. 1993, 48, 2419–2427. [Google Scholar] [CrossRef]
  185. Funazukuri, T.; Nishimoto, N. Tracer Diffusion Coefficients of Benzene in Dense CO2 at 313.2 K and 8.5–30 MPa. Fluid Phase Equilib. 1996, 125, 235–243. [Google Scholar] [CrossRef]
  186. Funazukuri, T.; Kong, C.Y.; Kagei, S. Infinite Dilution Binary Diffusion Coefficients of Benzene in Carbon Dioxide by the Taylor Dispersion Technique at Temperatures from 308.15 to 328.15 K and Pressures from 6 to 30 MPa. Int. J. Thermophys. 2001, 22, 1643–1660. [Google Scholar] [CrossRef]
  187. Sengers, J.M.H.L.; Deiters, U.K.; Klask, U.; Swidersky, P.; Schneider, G.M. Application of the Taylor Dispersion Method in Supercritical Fluids. Int. J. Thermophys. 1993, 14, 893–922. [Google Scholar] [CrossRef]
  188. Ago, K.; Nishiumi, H. Mutual Diffusion Coefficients of Benzene in Supercritical Carbon Dioxide. J. Chem. Eng. Jpn. 1999, 32, 563–568. [Google Scholar] [CrossRef]
  189. Bueno, J.L.; Suárez, J.J.; Dizy, J.; Medina, I. Infinite Dilution Diffusion Coefficients: Benzene Derivatives as Solutes in Supercritical Carbon Dioxide. J. Chem. Eng. Data 1993, 38, 344–349. [Google Scholar] [CrossRef]
  190. Kong, C.Y.; Funazukuri, T.; Kagei, S. Binary Diffusion Coefficients and Retention Factors for Polar Compounds in Supercritical Carbon Dioxide by Chromatographic Impulse Response Method. J. Supercrit. Fluids 2006, 37, 359–366. [Google Scholar] [CrossRef]
  191. Catchpole, O.J.; King, M.B. Measurement and Correlation of Binary Diffusion Coefficients in near Critical Fluids. Ind. Eng. Chem. Res. 1994, 33, 1828–1837. [Google Scholar] [CrossRef]
  192. Fu, H.; Coelho, L.A.F.; Matthews, M.A. Diffusion Coefficients of Model Contaminants in Dense CO2. J. Supercrit. Fluids 2000, 18, 141–155. [Google Scholar] [CrossRef]
  193. Suárez-Iglesias, O.; Medina, I.; Pizarro, C.; Bueno, J.L. Limiting Diffusion Coefficients of Ethyl Benzoate, Benzylacetone, and Eugenol in Carbon Dioxide at Supercritical Conditions. J. Chem. Eng. Data 2008, 53, 779–784. [Google Scholar] [CrossRef]
  194. González, L.M.; Suárez-Iglesias, O.; Bueno, J.L.; Pizarro, C.; Medina, I. Application of the Corresponding States Principle to the Diffusion in CO2. AIChE J. 2007, 53, 3054–3061. [Google Scholar] [CrossRef]
  195. Man, C.W. Limiting Mutual Diffusion of Nonassociated Aromatic Solutes; The Hong Kong Polytechnic University: Hong Kong, 2001. [Google Scholar]
  196. Suárez, J.J.; Medina, I.; Bueno, J.L. Diffusion Coefficients in Supercritical Fluids: Available Data and Graphical Correlations. Fluid Phase Equilib. 1998, 153, 167–212. [Google Scholar] [CrossRef]
  197. Funazukuri, T. Measurements of Binary Diffusion Coefficients of 20 Organic Compounds in CO2 at 313.2 K and 16.0 MPa. J. Chem. Eng. Jpn. 1996, 29, 191–192. [Google Scholar] [CrossRef]
  198. Pizarro, C.; Suárez-Iglesias, O.; Medina, I.; Bueno, J.L. Diffusion Coefficients of N-Butylbenzene, n-Pentylbenzene, 1-Phenylhexane, 1-Phenyloctane, and 1-Phenyldodecane in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2008, 47, 6783–6789. [Google Scholar] [CrossRef]
  199. Pizarro, C.; Suárez-Iglesias, O.; Medina, I.; Bueno, J.L. Diffusion Coefficients of Isobutylbenzene, Sec-Butylbenzene, and 3-Methylbutylbenzene in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2013, 58, 2001–2007. [Google Scholar] [CrossRef]
  200. González, L.M.; Bueno, J.L.; Medina, I. Measurement of Diffusion Coefficients for 2-Nitroanisole, 1,2-Dichlorobenzene and Tert-Butylbenzene in Carbon Dioxide Containing Modifiers. J. Supercrit. Fluids 2002, 24, 219–229. [Google Scholar] [CrossRef]
  201. Liong, K.K.; Wells, P.A.; Foster, N.R. Diffusion of Fatty Acid Esters in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1992, 31, 390–399. [Google Scholar] [CrossRef]
  202. Wells, P.A. Diffusion in Supercritical Fluids; The University of New South Wales: Kensington, Australia, 1991. [Google Scholar]
  203. Lai, C.-C.; Tan, C.-S. Measurement of Molecular Diffusion Coefficient in Supercritical Carbon Dioxide Using a Coated Capillary Column. Ind. Eng. Chem. Res. 1995, 34, 674–680. [Google Scholar] [CrossRef]
  204. Knaff, G.; Schlünder, E.U. Diffusion Coefficients of Naphthalene and Caffeine in Supercritical Carbon Dioxide. Chem. Eng. Process. 1987, 21, 101–105. [Google Scholar] [CrossRef]
  205. Lauer, H.H.; McManigill, D.; Board, R.D. Mobile-Phase Transport Properties of Liquefied Gases in near Critical and Supercritical Fluid Chromatography. Anal. Chem. 1983, 55, 1370–1375. [Google Scholar] [CrossRef]
  206. Tyn, M.T.; Calus, W.F. Temperature and Concentration Dependence of Mutual Diffusion Coefficients of Some Binary Liquid Systems. J. Chem. Eng. Data 1975, 20, 310–316. [Google Scholar] [CrossRef]
  207. Funazukuri, T.; Kong, C.Y.; Kagei, S. Binary Diffusion Coefficients, Partition Ratios and Partial Molar Volumes at Infinite Dilution for β-Carotene and α-Tocopherol in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2003, 27, 85–96. [Google Scholar] [CrossRef]
  208. Funazukuri, T.; Kong, C.Y.; Murooka, N.; Kagei, S. Measurements of Binary Diffusion Coefficients and Partition Ratios for Acetone, Phenol, α-Tocopherol, and β-Carotene in Supercritical Carbon Dioxide with a Poly(Ethylene Glycol)-Coated Capillary Column. Ind. Eng. Chem. Res. 2000, 39, 4462–4469. [Google Scholar] [CrossRef]
  209. Funazukuri, T.; Kong, C.Y.; Kagei, S. Measurements of Binary Diffusion Coefficients for Some Low Volatile Compounds in Supercritical Carbon Dioxide by Input–Output Response Technique with Two Diffusion Columns Connected in Series. Fluid Phase Equilib. 2002, 194, 1169–1178. [Google Scholar] [CrossRef]
  210. Dong, X.; Su, B.; Xing, H.; Bao, Z.; Yang, Y.; Ren, Q. Cosolvent Effects on the Diffusions of 1,3-Dichlorobenzene, L-Carvone, Geraniol and 3-Fluorophenol in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2011, 58, 216–225. [Google Scholar] [CrossRef]
  211. Dong, X.; Su, B.; Xing, H.; Yang, Y.; Ren, Q. Diffusion Coefficients of L-Menthone and L-Carvone in Mixtures of Carbon Dioxide and Ethanol. J. Supercrit. Fluids 2010, 55, 86–95. [Google Scholar] [CrossRef]
  212. Cordeiro, J.; Magalhães, A.L.; Valente, A.A.; Silva, C.M. Experimental and Theoretical Analysis of the Diffusion Behavior of Chromium(III) Acetylacetonate in Supercritical CO2. J. Supercrit. Fluids 2016, 118, 153–162. [Google Scholar] [CrossRef]
  213. Filho, C.A.; Silva, C.M.; Quadri, M.B.; Macedo, E.A. Tracer Diffusion Coefficients of Citral and D-Limonene in Supercritical Carbon Dioxide. Fluid Phase Equilib. 2003, 204, 65–73. [Google Scholar] [CrossRef]
  214. Kong, C.Y.; Gu, Y.Y.; Nakamura, M.; Funazukuri, T.; Kagei, S. Diffusion Coefficients of Metal Acetylacetonates in Supercritical Carbon Dioxide. Fluid Phase Equilib. 2010, 297, 162–167. [Google Scholar] [CrossRef]
  215. Yang, Y.N.; Matthews, M.A. Diffusion of Chelating Agents in Supercritical CO2 and a Predictive Approach for Diffusion Coefficients. J. Chem. Eng. Data 2001, 46, 588–595. [Google Scholar] [CrossRef]
  216. Kong, C.Y.; Takahashi, N.; Funazukuri, T.; Kagei, S. Measurements of Binary Diffusion Coefficients and Retention Factors for Dibenzo-24-Crown-8 and 15-Crown-5 in Supercritical Carbon Dioxide by Chromatographic Impulse Response Technique. Fluid Phase Equilib. 2007, 257, 223–227. [Google Scholar] [CrossRef]
  217. Cooper, E. Diffusion Coefficients at Infinite Dilution in Alcohol Solvents at Temperatures to 348 K and Pressures to 17 MPa; University of Ottawa: Ottawa, ON, Canada, 1992. [Google Scholar]
  218. Dahmen, N.; Dulberg, A.; Schneider, G.M.M. Determination of Binary Diffusion Coefficients in Supercritical Carbon Dioxide with Supercritical Fluid Chromatography (SFC). Ber. Bunsenges. Phys. Chem. 1990, 94, 384–386. [Google Scholar] [CrossRef]
  219. Umezawa, S.; Nagashima, A. Measurement of the Diffusion Coefficients of Acetone, Benzene, and Alkane in Supercritical CO2 by the Taylor Dispersion Method. J. Supercrit. Fluids 1992, 5, 242–250. [Google Scholar] [CrossRef]
  220. Silva, C.M.; Macedo, E.A. Diffusion Coefficients of Ethers in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1998, 37, 1490–1498. [Google Scholar] [CrossRef]
  221. Pizarro, C.; Suárez-Iglesias, O.; Medina, I.; Bueno, J.L. Using Supercritical Fluid Chromatography to Determine Diffusion Coefficients of 1,2-Diethylbenzene, 1,4-Diethylbenzene, 5-Tert-Butyl-m-Xylene and Phenylacetylene in Supercritical Carbon Dioxide. J. Chromatogr. A 2007, 1167, 202–209. [Google Scholar] [CrossRef]
  222. Pizarro, C.; Suárez-Iglesias, O.; Medina, I.; Bueno, J.L. Binary Diffusion Coefficients for 2,3-Dimethylaniline, 2,6-Dimethylaniline, 2-Methylanisole, 4-Methylanisole and 3-Nitrotoluene in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2009, 48, 1–8. [Google Scholar] [CrossRef]
  223. Kong, C.Y.; Nakamura, M.; Sone, K.; Funazukuri, T.; Kagei, S. Measurements of Binary Diffusion Coefficients for Ferrocene and 1,1′-Dimethylferrocene in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2010, 55, 3095–3100. [Google Scholar] [CrossRef]
  224. Higashi, H.; Iwai, Y.; Nakamura, Y.; Yamamoto, S.; Arai, Y. Correlation of Diffusion Coefficients for Naphthalene and Dimethylnaphthalene Isomers in Supercritical Carbon Dioxide. Fluid Phase Equilib. 1999, 166, 101–110. [Google Scholar] [CrossRef]
  225. Higashi, H.; Iwai, Y.; Takahashi, Y.; Uchida, H.; Arai, Y. Diffusion Coefficients of Naphthalene and Dimethylnaphthalene in Supercritical Carbon Dioxide. Fluid Phase Equilib. 1998, 144, 269–278. [Google Scholar] [CrossRef]
  226. Funazukuri, T.; Kong, C.Y.; Kagei, S. Effects of Molecular Weight and Degree of Unsaturation on Binary Diffusion Coefficients for Lipids in Supercritical Carbon Dioxide. Fluid Phase Equilib. 2004, 219, 67–73. [Google Scholar] [CrossRef]
  227. Funazukuri, T.; Kong, C.Y.; Kagei, S. Binary Diffusion Coefficient, Partition Ratio, and Partial Molar Volume for Docosahexaenoic Acid, Eicosapentaenoic Acid and α-Linolenic Acid at Infinite Dilution in Supercritical Carbon Dioxide. Fluid Phase Equilib. 2003, 206, 163–178. [Google Scholar] [CrossRef]
  228. Wong, C.-F.; Hayduk, W. Molecular Diffusivities for Propene in 1-Butanol, Chlorobenzene, Ethylene Glycol, and n-Octane at Elevated Pressures. J. Chem. Eng. Data 1990, 35, 323–328. [Google Scholar] [CrossRef]
  229. Pizarro, C.; Suárez-Iglesias, O.; Medina, I.; Bueno, J.L. Binary Diffusion Coefficients of 2-Ethyltoluene, 3-Ethyltoluene, and 4-Ethyltoluene in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2009, 54, 1467–1471. [Google Scholar] [CrossRef]
  230. Kong, C.Y.; Sone, K.; Sako, T.; Funazukuri, T.; Kagei, S. Solubility Determination of Organometallic Complexes in Supercritical Carbon Dioxide by Chromatographic Impulse Response Method. Fluid Phase Equilib. 2011, 302, 347–353. [Google Scholar] [CrossRef]
  231. Akgerman, A.; Erkey, C.; Orejuela, M. Limiting Diffusion Coefficients of Heavy Molecular Weight Organic Contaminants in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1996, 35, 911–917. [Google Scholar] [CrossRef]
  232. Lin, R.; Tavlarides, L.L. Diffusion Coefficients of Diesel Fuel and Surrogate Compounds in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2010, 52, 47–55. [Google Scholar] [CrossRef]
  233. Funazukuri, T.; Hachisu, S.; Wakao, N. Measurements of Binary Diffusion Coefficients of C16-C24 Unsaturated Fatty Acid Methyl Esters in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1991, 30, 1323–1329. [Google Scholar] [CrossRef]
  234. Funazukuri, T.; Ishiwata, Y. Diffusion Coefficients of Linoleic Acid Methyl Ester, Vitamin K3 and Indole in Mixtures of Carbon Dioxide and n-Hexane at 313.2 K, and 16.0 MPa and 25.0 MPa. Fluid Phase Equilib. 1999, 164, 117–129. [Google Scholar] [CrossRef]
  235. Kong, C.Y.; Withanage, N.R.W.; Funazukuri, T.; Kagei, S. Binary Diffusion Coefficients and Retention Factors for γ-Linolenic Acid and Its Methyl and Ethyl Esters in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2006, 37, 63–71. [Google Scholar] [CrossRef]
  236. Kong, C.Y.; Mori, M.; Funazukuri, T.; Kagei, S. Measurements of Binary Diffusion Coefficients, Retention Factors and Partial Molar Volumes for Myristoleic Acid and Its Methyl Ester in Supercritical Carbon Dioxide. Anal. Sci. 2006, 22, 1431–1436. [Google Scholar] [CrossRef]
  237. Funazukuri, T.; Ishiwata, Y.; Wakao, N. Predictive Correlation for Binary Diffusion Coefficients in Dense Carbon Dioxide. AIChE J. 1992, 38, 1761–1768. [Google Scholar] [CrossRef]
  238. Lamb, D.M.; Adamy, S.T.; Woo, K.W.; Jonas, J. Transport and Relaxation of Naphthalene in Supercritical Fluids. J. Phys. Chem. 1989, 93, 5002–5005. [Google Scholar] [CrossRef]
  239. U.S. Department of Commerce National Institute of Standards and Technology (NIST). Available online: https://www.nist.gov/ (accessed on 22 August 2020).
  240. Yaws, C.L. Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals; McGraw-Hill Professional: New York, NY, USA, 1998. [Google Scholar]
  241. Cibulka, I.; Ziková, M. Liquid Densities at Elevated Pressures of 1-Alkanols from C1 to C10: A Critical Evaluation of Experimental Data. J. Chem. Eng. Data 1994, 39, 876–886. [Google Scholar] [CrossRef]
  242. Cibulka, I.; Hnědkovský, L.; Takagi, T. P−ρ−T Data of Liquids: Summarization and Evaluation. 4. Higher 1-Alkanols (C11, C12, C14, C16), Secondary, Tertiary, and Branched Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and Aromatic Hydroxy Derivatives. J. Chem. Eng. Data 1997, 42, 415–433. [Google Scholar] [CrossRef]
  243. Cibulka, I.; Takagi, T.; Růžička, K. P−ρ−T Data of Liquids:  Summarization and Evaluation. 7. Selected Halogenated Hydrocarbons. J. Chem. Eng. Data 2000, 46, 2–28. [Google Scholar] [CrossRef]
  244. Cibulka, I.; Takagi, T. P−ρ−T Data of Liquids:  Summarization and Evaluation. 8. Miscellaneous Compounds. J. Chem. Eng. Data 2002, 47, 1037–1070. [Google Scholar] [CrossRef]
  245. Viswanath, D.S.; Ghosh, T.K.; Prasad, D.H.; Dutt, N.V.K.; Rani, K.Y. Viscosity of Liquids: Theory, Estimation, Experiment, and Data; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-5482-2. [Google Scholar]
  246. Lucas, K. Ein Einfaches Verfahren zur Berechnung der Viskosität von Gasen und Gasgemischen. Chem. Ing. Tech. 1974, 46, 157. [Google Scholar] [CrossRef]
  247. Assael, M.J.; Dymond, J.H.; Polimatidou, S.K. Correlation and Prediction of Dense Fluid Transport Coefficients. Fluid Phase Equilib. 1994, 15, 189–201. [Google Scholar] [CrossRef]
  248. Cano-Gómez, J.J.; Iglesias-Silva, G.A.; Rico-Ramírez, V.; Ramos-Estrada, M.; Hall, K.R. A New Correlation for the Prediction of Refractive Index and Liquid Densities of 1-Alcohols. Fluid Phase Equilib. 2015, 387, 117–120. [Google Scholar] [CrossRef]
  249. Pádua, A.A.H.; Fareleira, J.M.N.A.; Calado, J.C.G.; Wakeham, W.A. Density and Viscosity Measurements of 2,2,4-Trimethylpentane (Isooctane) from 198 K to 348 K and up to 100 MPa. J. Chem. Eng. Data 1996, 41, 1488–1494. [Google Scholar] [CrossRef]
  250. Pitzer, K.S.; Schreiber, D.R. Improving Equation-of-State Accuracy in the Critical Region; Equations for Carbon Dioxide and Neopentane as Examples. Fluid Phase Equilib. 1988, 41, 1–17. [Google Scholar] [CrossRef]
  251. Altunin, V.V.; Skhabetinov, M. Viscosity of Liquid and Gaseous Carbon Dioxide at Temperatures 220−1300 K and Pressure up to 1200 Bar. Teploenergetika 1972, 8, 85–89. [Google Scholar]
  252. IAPWS. Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. In International Steam Tables; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2008; pp. 7–150. [Google Scholar]
Figure 1. Schematic representation of the optimization process. The objective function is in this work the AARD (Equation (1)).
Figure 1. Schematic representation of the optimization process. The objective function is in this work the AARD (Equation (1)).
Materials 15 06416 g001
Figure 2. ARD histograms with bin sizes of 2.5% for systems with: (a) polar solvents, excluding water; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-CO2 as solvent.
Figure 2. ARD histograms with bin sizes of 2.5% for systems with: (a) polar solvents, excluding water; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-CO2 as solvent.
Materials 15 06416 g002
Figure 3. Calculated ( D 12 calc ) vs. experimental ( D 12 exp ) binary diffusion coefficients for systems with: (a) polar solvents, excluding water; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-CO2 as solvent.
Figure 3. Calculated ( D 12 calc ) vs. experimental ( D 12 exp ) binary diffusion coefficients for systems with: (a) polar solvents, excluding water; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-CO2 as solvent.
Materials 15 06416 g003
Figure 4. Relative deviation (RD) vs. reduced number density ( ρ n , 1 * ) of the SC-CO2 diffusivity subset. The vertical dashed line identifies the reduced number density of CO2 ( ρ n , 1 , c * ) .
Figure 4. Relative deviation (RD) vs. reduced number density ( ρ n , 1 * ) of the SC-CO2 diffusivity subset. The vertical dashed line identifies the reduced number density of CO2 ( ρ n , 1 , c * ) .
Materials 15 06416 g004
Figure 5. Representation of experimental (mark) and predicted (line) D 12 values vs. reduced number density of the solvent ( ρ n , 1 * ), at fixed T or P , for systems with: (a) polar solvents excluding water; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-CO2 as solvent. The letters identify the following systems: A—ethanol/propane at 348.15 K (I), 323.15 K (II), and 298.15 K (III); B—ethyl acetate/quercetin at 1 bar; C—ethanol/palladium(II) acetylacetonate at 1 bar; D—water/methane at 1 bar; E—water/[Bmim][PF6] at 1 bar; F—water/alanine at 1 bar; G—water/α-cyclodextrin at 1 bar; H—n-octane/xenon at 1 bar; I—n-hexane/ferrocene at 313.15 K; J—cyclohexane/acetone at 160 bar; K—SC-CO2/eicosapentaenoic acid at 333.15 K (I) and 313.15 K (II); L—SC-CO2/ethanol at 313.21 K.
Figure 5. Representation of experimental (mark) and predicted (line) D 12 values vs. reduced number density of the solvent ( ρ n , 1 * ), at fixed T or P , for systems with: (a) polar solvents excluding water; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-CO2 as solvent. The letters identify the following systems: A—ethanol/propane at 348.15 K (I), 323.15 K (II), and 298.15 K (III); B—ethyl acetate/quercetin at 1 bar; C—ethanol/palladium(II) acetylacetonate at 1 bar; D—water/methane at 1 bar; E—water/[Bmim][PF6] at 1 bar; F—water/alanine at 1 bar; G—water/α-cyclodextrin at 1 bar; H—n-octane/xenon at 1 bar; I—n-hexane/ferrocene at 313.15 K; J—cyclohexane/acetone at 160 bar; K—SC-CO2/eicosapentaenoic acid at 333.15 K (I) and 313.15 K (II); L—SC-CO2/ethanol at 313.21 K.
Materials 15 06416 g005
Table 1. Performance of the D 12 model for each subset of systems and for the global database.
Table 1. Performance of the D 12 model for each subset of systems and for the global database.
SolventPolarWaterNon-PolarSC-CO2Global
Nsys89133154177553
NDP14051266111350288812
AARD (%)3.773.963.293.233.43
ARD (%)−0.360.16−0.310.350.13
Nsys—number of systems; NDP—number of data points.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zêzere, B.; Portugal, I.; Gomes, J.R.B.; Silva, C.M. Modeling Tracer Diffusion Coefficients of Any Type of Solutes in Polar and Non-Polar Dense Solvents. Materials 2022, 15, 6416. https://doi.org/10.3390/ma15186416

AMA Style

Zêzere B, Portugal I, Gomes JRB, Silva CM. Modeling Tracer Diffusion Coefficients of Any Type of Solutes in Polar and Non-Polar Dense Solvents. Materials. 2022; 15(18):6416. https://doi.org/10.3390/ma15186416

Chicago/Turabian Style

Zêzere, Bruno, Inês Portugal, José R. B. Gomes, and Carlos M. Silva. 2022. "Modeling Tracer Diffusion Coefficients of Any Type of Solutes in Polar and Non-Polar Dense Solvents" Materials 15, no. 18: 6416. https://doi.org/10.3390/ma15186416

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop