Characterization of In Situ Concrete of Existing RC Constructions
Abstract
:1. Introduction
2. Methods and Materials
Database
- Subset DB_1: 2010 samples with compression tests () only (this is the main database).
- Subset DB_2: 1039 samples with Specific Weight (SW).
- Subset DB_3: 1175 samples with , rebound hammer test (RN), and ultrasonic velocity test (V).
- Subset DB_4: 202 samples with compression tests and ultrasonic velocity tests, and V.
3. Results
3.1. Subset DB_1: Compression Test Analyses
3.2. Subset DB_2: Compression Test and Specific Weight
3.3. Subset DB_3: Compression Test, Rebound Hammer Test, Ultrasonic Velocity Test
3.4. Subset DB_4: Compression Test and Ultrasonic Velocity Test
3.5. Discussion
4. Conclusions
- The rebound hammer test is not representative of the compressive concrete strength and is also misleading. It must be excluded. The classic SonReb method should not be used;
- Ultrasonic velocity tests can be used only if suitably calibrated with Ultrasonic velocity tests on the extracted concrete before the compression tests;
- Using current methods and procedures, NDTs cannot be used a priori to identify homogeneous areas.
- –
- An increase in the amount of experimental data available;
- –
- The improvement of data collection procedures and standardization of analysis procedures;
- –
- The updated indication in the codes and guidelines.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolce, M.; Di Bucci, D. Comparing recent Italian earthquakes. Bull. Earthq. Eng. 2015, 15, 497–533. [Google Scholar] [CrossRef]
- OPCM 3274, Ordinanza del Presidente del Consiglio dei Ministri nr. 3274 del 20 Marzo 2003 “Primi Elementi in Materia di Criteri Generali per la Classificazione Sismica del Territorio Nazionale e di Normative Tecniche per le Costruzioni in Zona Sismica”; Presidente del Consiglio dei Ministri: Roma, Italy, 2003. (In Italian)
- Masi, A.; Vona, M. Vulnerability assessment of gravity-load designed RC buildings, evaluation of seismic capacity through non linear dynamic analyses. Eng. Struct. 2012, 45, 257–269. [Google Scholar] [CrossRef]
- Applied Technology Council. ATC-40—Seismic Evaluation and Retrofit of Concrete Buildings, Was Developed under a Contract from the California Seismic Safety Commission; Report No. SSC 96-01; Applied Technology Council: Redwood City, CA, USA, 1996. [Google Scholar]
- Federal Emergency Management Agency (FEMA). FEMA 356—Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Federal Emergency Management Agency (FEMA): Washington, DC, USA, 2000. [Google Scholar]
- New Zealand Society for Earthquake Engineering (NZSEE). Assessment and Improvement of the Structural Performance of Buildings in Earthquakes, Recommendations of a NZSEE Study Group on Earthquake Risk Buildings; New Zealand Society for Earthquake Engineering (NZSEE): Wellingto, New Zealand, 2006. [Google Scholar]
- Manfredi, G.; Masi, A.; Pinho, R.; Verderame, G.; Vona, M. Valutazione di Edifici Esistenti in C.A.; IUSS Press: Pavia, Italy, 2007. [Google Scholar]
- European Standard EN 1998-3-2005; Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. Comité Européen de Normalisation (CEN): Brussels, Belgium; European Committee for Standardization: Brussels, Belgium, 2005.
- NTC 2008, Decreto del Ministro delle Infrastrutture. 2008 Norme Tecniche per le Costruzioni, Suppl. Or. G.U., n.29 del 04 febbraio 2008—Serie Generale. (In Italian)
- NTC 2018, Decreto del Ministro delle Infrastrutture e dei Trasporti del 17 Gennaio 2018, Nuove Norme Tecniche per le Costruzioni. Suppl. Or. G.U., n. 42 del 20 Febbraio 2018—Serie Generale. (In Italian)
- Ministero delle Infrastrutture e dei Trasporti. Circolare 21 Gennaio 2019, n. 7 C.S.LL.PP. Istruzioni per L’applicazione dell’«Aggiornamento delle “Norme Tecniche per le Costruzioni”» di cui al Decreto Ministeriale 17 Gennaio 2018. Circolare n. 7 C.S.LL.PP. Suppl. Or. G.U., n. 35 del 11 Febbraio 2019—Serie Generale; Ministero delle Infrastrutture e dei Trasporti: Roma, Italy, 2019. (In Italian) [Google Scholar]
- Vona, M. A review of experimental results about in situ concrete strength. International Conference on Materials for Renewable Energy and Environment, MREE 2013, 15–16 May 2013. Adv. Mater. Res. 2013, 773, 278–282. [Google Scholar] [CrossRef]
- Masi, A.; Vona, M. La Stima della Resistenza del Calcestruzzo In-Situ: Impostazione delle Indagini ed Elaborazione dei Risultati, Progettazione Sismica; No. 1/2009; IUSS Press: Pavia, Italy, 2009; ISSN 1973-7432. (In Italian) [Google Scholar]
- Masi, A.; Vona, M. Prove distruttive e non distruttive su materiali ed elementi strutturali di edifici esistenti in cemento armato. In Proceedings of the Conferenza Nazionale sulle NDT, Monitoraggio e Diagnostica, 12° Congresso Nazionale dell’AiNDT, Biennale NDT-MD, Milano, Italy, 11–13 October 2007. (In Italian). [Google Scholar]
- Sabbağ, N.; Uyanık, O. Prediction of reinforced concrete strength by ultrasonic velocities. J. Appl. Geophys. 2017, 141, 13–23. [Google Scholar] [CrossRef]
- UNI EN 12504-2; Testing Concrete in Structures—Non-Destructive Testing—Determination of Rebound Number. UNI Ente Italiano di Normazione: Milano, Italy, 2001. (In Italian)
- UNI EN 12504-1; Testing Concrete in Structures—Cored Specimens—Taking, Examining and Testing in Compression. UNI Ente Italiano di Normazione: Milano, Italy, 2002. (In Italian)
- UNI EN 12504-4; Testing concrete—Part 4: Determination of ultrasonic pulse velocity. UNI Ente Italiano di Normazione: Milano, Italy, 2005.
- Malhotra, V.M. Contact strength requirements cores versus in-situ evaluation. ACI J. Proc. 1977, 74, 163–172. [Google Scholar]
- RILEM NDT 4; Recommendations for In Situ Concrete Strength Determination by Combined Non-Destructive Methods, Compendium of RILEM Technical Recommendations. E&FN Spon: London, UK, 1993.
- Breysse, D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods, Constr. Build. Mater. 2012, 33, 139–163. [Google Scholar] [CrossRef]
- De Stefano, M.; Tanganelli, M.; Viti, S. Variability in concrete mechanical properties as a source of in-plan irregularity for existing RC framed structures. Eng. Struct. 2014, 59, 161–172. [Google Scholar] [CrossRef]
- Pereira, N.; Romão, X. Assessing concrete strength variability in existing structures based on the results of NDTs. Constr. Build. Mater. 2018, 173, 786–800. [Google Scholar] [CrossRef]
- Reysse, D.; Balayssac, J.P.; Biondi, S.; Borosnyói, A.; Candigliota, E.; Chiauzzi, L.; Garnier, V.; Grantham, M.; Gunes, O.; Luprano, V.; et al. Non destructive assessment of in situ concrete strength: Comparison of approaches through an international benchmark. Mater. Structutres 2017, 50, 133. [Google Scholar] [CrossRef]
- Breccolotti, M.; Bonfigli, M.F.; Materazzi, A.L. SonReb concrete assessment for spatially correlated NDT data. Constr. Build. Mater. 2015, 192, 391–402. [Google Scholar] [CrossRef]
- Verderame, G.M.; Manfredi, G.; Frunzio, G. Le proprietà meccaniche dei calcestruzzi impiegati nelle strutture in cemento armato realizzate negli anni ’60. In Proceedings of the X Convegno Nazionale “L’Ingegneria Sismica in Italia”, Potenza-Matera, Italy, 9–13 September 2001. (In Italian). [Google Scholar]
- Pucinotti, R. Assessment of in situ characteristic concrete strength. Constr. Build. Mater. 2013, 44, 63–73. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Sbartai, Z.M.; Lataste, J.F.; Breysse, D.; Bos, F. Assessing the spatial variability of concrete structures using NDT techniques-laboratory tests and case study. Constr. Build. Mater. 2013, 49, 240–250. [Google Scholar] [CrossRef]
- Breysse, D.; Martinez-Fernandez, J. Assessing concrete strength with rebound hammer: Review of key issues and ideas for more reliable conclusions. Mater. Struct. 2013, 47, 1589–1604. [Google Scholar] [CrossRef]
- Pucinotti, R. Reinforced concrete structure. Non destructive in situ strength assessment of concrete. Constr. Build. Mater. 2015, 75, 331–341. [Google Scholar] [CrossRef]
- Samarin, A. Combined methods. In Handbook on Nondestructive Testing of Concrete, 2nd ed.; Malhotra, V.M., Carino, N.J., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Quagliarini, E.; Clementi, F.; Maracchini, G.; Monni, F. Experimental assessment of concrete compressive strength in old existing RC buildings: A possible way to reduce the dispersion of DT results. J. Build. Eng. 2016, 8, 162–171. [Google Scholar] [CrossRef]
- Alwash, M.; Sbartaï, Z.M.; Breysse, D. Non-destructive assessment of both mean strength and variability of concrete: A new bi-objective approach. Constr. Build. Mater 2016, 113, 880–889. [Google Scholar] [CrossRef]
- Ali-Benyahia, K.; Sbartaï, Z.M.; Breysse, D.; Kenai, S.; Ghrici, M. Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: General statements based on a real case-study. Case Stud. Constr. Mater. 2017, 6, 109–119. [Google Scholar] [CrossRef]
- Alwash, M.; Breysse, D.; Sbartaï, Z.M. Non-destructive strength evaluation of concrete: Analysis of some key factors using synthetic simulations. Constr. Build. Mater. 2015, 99, 235–245. [Google Scholar] [CrossRef]
- Alwash, M.; Breysse, D.; Sbartaı, Z.M. Using Monte-Carlo simulations to evaluate the efficiency of different strategies for nondestructive assessment of concrete strength. Mater. Struct. 2017, 50, 90. [Google Scholar] [CrossRef]
- Masi, A.; Chiauzzi, L.; Manfredi, V. Criteria for identifying concrete homogeneous areas for the estimation of in-situ strength in RC buildings. Constr. Build. Mater. 2016, 121, 576–587. [Google Scholar] [CrossRef]
- Cristofaro, M.T.; Viti, S.; Tanganelli, M. New predictive models to evaluate concrete compressive strength using the Sonreb method. J. Build. Eng. 2020, 27, 100962. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Jalali, S. NDT measurements for the prediction of 28-day compressive strength. NDTE Int. 2010, 43, 55–61. [Google Scholar] [CrossRef]
- Khashman, A.; Akpinar, P. Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks. Procedia Comput. Sci. 2017, 108, 2358–2362. [Google Scholar] [CrossRef]
- Asteris, P.G.; Mokos, V.G. Concrete compressive strength using artificial neural networks. Neural Comput. Appl. 2020, 32, 11807–11826. [Google Scholar] [CrossRef]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Lourenço, P.B. Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests. Constr. Build. Mater. 2021, 303, 124450. [Google Scholar] [CrossRef]
- Bellander, U. NDT testing methods for estimating compressive strength in finished structures—Evaluation of accuracy and testing system. In RILEM Symposium Proceedings on Quality Control of Concrete Structures; Swedish Concrete Research Institute: Stockholm, Sweden, 1979; Volume 1, Session 2.1; pp. 37–45. [Google Scholar]
- Bocca, P.; Cianfrone, F. Le Prove Non Distruttive Sulle Costruzioni: Una Metodologia combinata. L’Industria Ital. Cem. 1983, 6, 429–436. (In Italian) [Google Scholar]
- Kheder, G.F. A two stage procedure for assessment of in-situ concrete strength using combined non-destructive testing. Mater. Struct. 1999, 32, 410–417. [Google Scholar] [CrossRef]
- Caiaro, R.; De Paola, S.; Porco, G. Indagini non distruttive per il controllo dei calcestruzzi di media ed alta resistenza. In Atti del 10° Congresso Nazionale dell’AIPnD; AIPnD: Ravenna, Italy, 2003; pp. 360–371. (In Italian) [Google Scholar]
- Faella, G.; Guadagnuolo, M.; Donadio, A.; Ferri, L. Calibrazione sperimentale del metodo Sonreb per costruzioni della Provincia di Caserta degli anni ’60 ’80. In Proceedings of the Atti del XIV Convegno Nazionale L’Ingegneria Sismica in Italia, Potenza, Italy, 18–22 September 2011. (In Italian). [Google Scholar]
- Masi, A.; Chiauzzi, L. An experimental study on the within-member variability of in situ concrete strength in RC building structures. Constr. Build. Mater. 2013, 47, 951–961. [Google Scholar] [CrossRef]
- Masi, A.; Dolce, M.; Vona, M.; Nigro, D.; Pace, G.; Ferrini, M. Indagini sperimentali su elementi strutturali estratti da una scuola esistente in c.a. In Proceedings of the Atti del XII Convegno Nazionale L’Ingegneria Sismica in Italia, Pisa, Italy, 10–14 June 2007. [Google Scholar]
- Vona, M.; Nigro, D. Evaluation of the predictive ability of the in situ concrete strength through core drilling and its effects on the capacity of the RC columns. Mater. Struct./Mater. Constr. 2015, 48, 1043–1059. [Google Scholar] [CrossRef]
- Poorarbabi, A.; Ghasemi, M.; Moghaddam, M.A. Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Eng. J. 2020, 11, 939–949. [Google Scholar] [CrossRef]
- Pessiki, S.P. In-Place Methods to Estimate Concrete Strengths; ACI 228.1R-03 Report; American Concrete Institute: Indianapolis, IN, USA, 2003. [Google Scholar]
- Brozovsky, J. Evaluation of calculation correlation efficiency as mentioned in EN13791 in order to determination concrete compression strength by non destructive testing. In Proceedings of the 10th International Conference of the Slovenian Society for NDT, Ljubljana, Slovenia, 1–3 September 2009; pp. 221–231. [Google Scholar]
- Croce, P.; Marsili, F.; Klawonn, F.; Formichi, P.; Landi, F. Evaluation of statistical parameters of concrete strength from secondary experimental test data. Constr. Build. Mater. 2018, 163, 343–359. [Google Scholar] [CrossRef]
- Vona, M.; Anelli, A.; Mastroberti, M.; Murgante, B.; Santa-Cruz, S. Prioritization strategies to reduce the seismic risk of the public and strategic buildings. Disaster Adv. 2017, 10, 1–15. [Google Scholar]
fc,core | |||||
---|---|---|---|---|---|
Construction Age | n° Samples | Mean Value [MPa] | Deviation Standard [MPa] | Min [MPa] | Max [MPa] |
<1961 | 256 | 28.24 | 14.73 | 6.77 | 64.27 |
1962–1971 | 416 | 19.77 | 9.00 | 2.76 | 52.21 |
1972–1981 | 507 | 21.94 | 11.01 | 2.55 | 67.87 |
1982–1990 | 64 | 25.97 | 9.59 | 6.72 | 47.96 |
>1990 | 767 | 20.27 | 9.12 | 2.48 | 59.90 |
Total | 2010 |
Construction Age | n° Samples | Percentage of Samples | Specific Weight Mean Value [kg/m3] | Deviation Standard [kg/m3] | Min [kg/m3] | Max [kg/m3] |
---|---|---|---|---|---|---|
<1962 | 35 | 3.37% | 2277 | 34 | 2197 | 2345 |
1962–1971 | 248 | 23.87% | 2260 | 79 | 2056 | 2444 |
1972–1981 | 265 | 25.51% | 2194 | 110 | 1854 | 2455 |
>1981 | 491 | 47.26% | 2257 | 112 | 1860 | 2619 |
1039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vona, M. Characterization of In Situ Concrete of Existing RC Constructions. Materials 2022, 15, 5549. https://doi.org/10.3390/ma15165549
Vona M. Characterization of In Situ Concrete of Existing RC Constructions. Materials. 2022; 15(16):5549. https://doi.org/10.3390/ma15165549
Chicago/Turabian StyleVona, Marco. 2022. "Characterization of In Situ Concrete of Existing RC Constructions" Materials 15, no. 16: 5549. https://doi.org/10.3390/ma15165549