Long-Term Comparison between Waste Paper Fly Ash and Traditional Binder as Hydraulic Road Binder Exposed to Sulfate Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil, Stabilizers, and Reagent
2.2. Sample Preparation
2.3. Procedure for Measuring Swelling
2.4. Microstructural Studies of Stabilized Soil
2.5. Unconfined Compressive Strength
3. Results and Discussion
3.1. Unconfined Compressive Strength
3.2. Swelling in Treated Soil
3.3. Microstructural Studies of Treated Soil
4. Conclusions
- -
- The unconfined compressive strength (UCS) results after 360 days of WPFA treated soil with different sulfate solutions and different temperatures showed no major changes. The UCS for WPFA after wetting/drying cycles stayed at around 3 MPa for W1 and W3. However, for W2, UCS decreased to about 1.7 MPa, a decrease of 56%, which was expected since only a portion of samples was stabilized with WPFA.
- -
- The UCS of cement samples was significantly reduced compared to those cured at the optimum humidity (90% ± 5% relative humidity) from 6 MPa to 4.3 MPa for both W1 and W3. For samples with W2, the UCS is also decreased by around 2.9 MPa. Although the cement strength was lowered, it was still high enough to surpass the minimum requirement of 2.5 MPa mentioned by Spanish roads and bridges standards.
- -
- The swelling in the samples was tested over 2 years while being exposed to different sulfate solutions and temperatures. The different temperatures and sulfate concentrations had no significant effect on the swelling in soils treated with WPFA or cement. In most cases, a minor shrinkage of around 0.1% was observed. Meanwhile, the weight of the samples increased slightly between 0.02% to 2%.
- -
- Furthermore, the microstructural studies revealed that the formation of ettringite reached its peak after 180 days for samples in contact with subgrade soil. This formation was highest with subgrade soil (W2), intermediate for W3 (20 g/SO4), and lowest for W1 (tap water). Moreover, after 360 days, the ettringite was partially converted into other poor crystalline AFm phases (e.g., AFm–CO3, AFm–SO4, or Friedel’s salt), which were not detected due to complexity in the system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Swelling Results
Appendix A.2. TGA Results
Appendix A.3. FTIR Results
References
- Phummiphan, I.; Horpibulsuk, S.; Phoo-ngernkham, T.; Arulrajah, A.; Shen, S.-L. Marginal Lateritic Soil Stabilized with Calcium Carbide Residue and Fly Ash Geopolymers as a Sustainable Pavement Base Material. J. Mater. Civ. Eng. 2017, 29, 04016195. [Google Scholar] [CrossRef]
- Behnood, A. Soil and Clay Stabilization with Calcium- and Non-Calcium-Based Additives: A State-of-the-Art Review of Challenges, Approaches and Techniques. Transp. Geotech. 2018, 17, 14–32. [Google Scholar] [CrossRef]
- Vitale, E.; Deneele, D.; Russo, G. Effects of Carbonation on Chemo-Mechanical Behaviour of Lime-Treated Soils. Bulletin of Eng. Geol. Environ. 2021, 80, 2687–2700. [Google Scholar] [CrossRef]
- Dermatas, D. Ettringite-Induced Swelling in Soils: State-of-the-Art. Appl. Mech. Rev. 1995, 48, 659–673. [Google Scholar] [CrossRef]
- Ali, A.; Cortes, D.D.; Weldon, B.; Bandini, P.; Lommler, J.C. Effect of Compactive Effort on the Performance of Fine-Grained Soil–Cement Mixtures. Proc. Inst. Civ. Eng.-Ground Improv. 2021, 174, 167–172. [Google Scholar] [CrossRef]
- Ouhadi, V.R.; Yong, R.N. Ettringite Formation and Behaviour in Clayey Soils. Appl. Clay Sci. 2008, 42, 258–265. [Google Scholar] [CrossRef]
- Glasser, F.P. The Stability of Ettringite. In Proceedings of the International RILEM Workshop on Internal Sulfate Attack and Delayed Ettringite Formation; RILEM Publications SARL, Beijing, China, 12–14 October 2014; pp. 43–64. [Google Scholar]
- Dayarathne, W.; Galappaththi, G.S.; Perera, K.E.S.; Nanayakkara, S.M.A. Evaluation of the Potential for Delayed Ettringite Formation in Concrete. In Proceedings of the National Engineering Conference, Moratuwa, Sri Lanka, 26 November 2013; pp. 59–66. [Google Scholar]
- Brown, P.W.; Bothe, J.V. The Stability of Ettringite. Adv. Cem. Res. 1993, 5, 47–63. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, Z.; Zheng, K.; Ma, C. Inorganic Cementing Materials. In Civil Engineering Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 17–57. ISBN 978-0-12-822865-4. [Google Scholar]
- Panesar, D.K. Supplementary Cementing Materials. In Developments in the Formulation and Reinforcement of Concrete; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–85. ISBN 978-0-08-102616-8. [Google Scholar]
- Benhaoua, W.; Grine, K.; Kenai, S. Performance of Stabilized Earth with Wheat Straw and Slag. MRS Adv. 2020, 5, 1285–1294. [Google Scholar] [CrossRef]
- Dabbas, M.A.; Eisa, M.Y.; Kadhim, W.H. Estimation of Gypsum-Calcite Percentages Using a Fourier Transform Infrared Spectrophotometer (FTIR), in Alexandria Gypsiferous Soil-Iraq. Iraqi J. Sci. 2014, 55, 1916–1926. [Google Scholar]
- Verheye, W.H.; Boyadgiev, T.G. Evaluating the Land Use Potential of Gypsiferous Soils from Field Pedogenic Characteristics. Soil Use Manag. 1997, 13, 97–103. [Google Scholar] [CrossRef]
- Razouki, S.S.; Kuttah, D.K. Predicting Long-Term Soaked CBR of Gypsiferous Subgrade Soils. Proc. Inst. Civ. Eng.-Transp. 2006, 159, 135–140. [Google Scholar] [CrossRef]
- Jara, L.M.S. Estado Actual de la Producción de Yeso en España. In Técnica industrial: Revista fundada por la Asociación Nacional de Peritos e Ingenieros; Técnicos Industriales: Colosio, Mexico, 2019; pp. 24–30. [Google Scholar]
- Arderiu, O.R.; Vilar, F.M. Situación, Características y Extension de Los Terrenos Yesíferos en España; Servicio Geologico de Obras Publicas: Madrid, Spain, 1962. [Google Scholar]
- Harris, J.P.; Sebesta, S.; Scullion, T. Hydrated Lime Stabilization of Sulfate-Bearing Vertisols in Texas. Transp. Res. Rec. J. Transp. Res. Board 2004, 1868, 31–39. [Google Scholar] [CrossRef]
- Little, D.N.; Nair, S.; Herbert, B. Addressing Sulfate-Induced Heave in Lime Treated Soils. J. Geotech. Geoenviron. Eng. 2010, 136, 110–118. [Google Scholar] [CrossRef]
- Si, Z. Forensic Investigation of Pavement Premature Failure Due to Soil Sulfate-Induced Heave. J. Geotech. Geoenviron. Eng. 2008, 134, 1201–1204. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.G.; Dukes, O.M.; Tabet, W.; Cerato, A.B.; Miller, G.A. Sulfate Induced Heave in Oklahoma Soils Due to Lime Stabilization. In Proceedings of the GeoCongress 2008, New Orleans, LA, USA, 9–12 March 2008; pp. 444–451. [Google Scholar]
- Ciliberto, E.; Ioppolo, S.; Manuella, F. Ettringite and Thaumasite: A Chemical Route for Their Removal from Cementious Artefacts. J. Cult. Herit. 2008, 9, 30–37. [Google Scholar] [CrossRef]
- Mitchell, J.; Dermatas, D. Clay Soil Heave Caused by Lime-Sulfate Reactions. In Innovations and Uses for Lime; Walker, D., Hardy, T., Hoffman, D., Stanley, D., Eds.; ASTM International: West Conshohocken, PA, USA, 1992; pp. 41–64. ISBN 978-0-8031-1436-4. [Google Scholar]
- Chen, D.-H.; Harris, P.; Scullion, T.; Bilyeu, J. Forensic Investigation of a Sulfate-Heaved Project in Texas. J. Perform. Constr. Facil. 2005, 19, 324–330. [Google Scholar] [CrossRef]
- Knopp, J.; Moormann, C. Ettringite Swelling in the Treatment of Sulfate-Containing Soils Used as Subgrade for Road Constructions. Procedia Eng. 2016, 143, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Caselles, L.D.; Hot, J.; Roosz, C.; Cyr, M. Stabilization of Soils Containing Sulfates by Using Alternative Hydraulic Binders. Appl. Geochem. 2020, 113, 104494. [Google Scholar] [CrossRef]
- Seco, A.; Miqueleiz, L.; Prieto, E.; Marcelino, S.; García, B.; Urmeneta, P. Sulfate Soils Stabilization with Magnesium-Based Binders. Appl. Clay Sci. 2017, 135, 457–464. [Google Scholar] [CrossRef]
- Eyo, E.U.; Abbey, S.J.; Ngambi, S.; Ganjian, E.; Coakley, E. Incorporation of a Nanotechnology-Based Product in Cementitious Binders for Sustainable Mitigation of Sulphate-Induced Heaving of Stabilised Soils. Eng. Sci. Technol. Int. J. 2021, 24, 436–448. [Google Scholar] [CrossRef]
- Al-Atroush, M.E.; Sebaey, T.A. Stabilization of Expansive Soil Using Hydrophobic Polyurethane Foam: A Review. Transp. Geotech. 2021, 27, 100494. [Google Scholar] [CrossRef]
- Lucian, C. Effectiveness of Mellowing Time on the Properties of Two-Stage Lime-Cement Stabilized Expansive Soils. Int. J. Eng. Res. Technol. 2013, 2, 623–634. [Google Scholar]
- de Jesús Arrieta Baldovino, J.; dos Santos Izzo, R.L.; Rose, J.L. Effects of Freeze–Thaw Cycles and Porosity/Cement Index on Durability, Strength and Capillary Rise of a Stabilized Silty Soil under Optimal Compaction Conditions. Geotech. Geol. Eng. 2021, 39, 481–498. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Z.; Jing, Y. Characteristics of Strength and Pore Distribution of Lime-Flyash Loess under Freeze-Thaw Cycles and Dry-Wet Cycles. Arab. J. Geosci. 2017, 10, 544. [Google Scholar] [CrossRef]
- Shubbar, A.A.; Sadique, M.; Nasr, M.S.; Al-Khafaji, Z.S.; Hashim, K.S. The Impact of Grinding Time on Properties of Cement Mortar Incorporated High Volume Waste Paper Sludge Ash. Karbala Int. J. Mod. Sci. 2020, 6, 7. [Google Scholar] [CrossRef]
- Delaram, F.; Mohammadi, Y.; Adlparvar, M.R. Evaluation of the Combined Use of Waste Paper Sludge Ash and Nanomaterials on Mechanical Properties and Durability of High Strength Concretes. IJE 2021, 34, 1653–1666. [Google Scholar] [CrossRef]
- Baloochi, H.; Aponte, D.; Barra, M. Waste Paper Ash as a Hydraulic Road Binder: Hydration, Mechanical and Leaching Considerations. J. Environ. Manag. 2022, 314, 115042. [Google Scholar] [CrossRef]
- Baloochi, H.; Aponte, D.; Barra, M. Soil Stabilization Using Waste Paper Fly Ash: Precautions for Its Correct Use. Appl. Sci. 2020, 10, 8750. [Google Scholar] [CrossRef]
- Ylmén, R.; Jäglid, U. Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy. Int. J. Concr. Struct. Mater. 2013, 7, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Ji, F.; Chen, Q.; Yan, P.; Pei, L. Synthesis and Enhanced Phosphate Recovery Property of Porous Calcium Silicate Hydrate Using Polyethyleneglycol as Pore-Generation Agent. Materials 2013, 6, 2846–2861. [Google Scholar] [CrossRef]
- Horgnies, M.; Chen, J.J.; Bouillon, C. Overview about the Use of Fourier Transform Infrared Spectroscopy to Study Cementitious Materials; WIT Press: Southampton, UK, 2013; pp. 251–262. [Google Scholar]
- MOLLAH, M.; KESMEZ, M.; COCKE, D. An X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopic (FT-IR) Investigation of the Long-Term Effect on the Solidification/Stabilization (S/S) of Arsenic(V) in Portland Cement Type-V. Sci. Total Environ. 2004, 325, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.N. IR Spectroscopy. In Handbook of Analytical Techniques in Concrete Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 174–204. ISBN 978-0-8155-1437-4. [Google Scholar]
- Hughes, T.L.; Methven, C.M.; Jones, T.G.J.; Pelham, S.E.; Fletcher, P.; Hall, C. Determining Cement Composition by Fourier Transform Infrared Spectroscopy. Adv. Cem. Based Mater. 1995, 2, 91–104. [Google Scholar] [CrossRef]
- Tararushkin, E.V.; Shchelokova, T.N.; Kudryavtseva, V.D. A Study of Strength Fluctuations of Portland Cement by FTIR Spectroscopy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 919, 022017. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The Kinetics and Mechanisms of Amorphous Calcium Carbonate (ACC) Crystallization to Calcite, Viavaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Péra, J.; Husson, S.; Guilhot, B. Influence of Finely Ground Limestone on Cement Hydration. Cem. Concr. Compos. 1999, 21, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Böke, H.; Akkurt, S. Ettringite Formation in Historic Bath Brick–Lime Plasters. Cem. Concr. Res. 2003, 33, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Richard, T.; Mercury, L.; Poulet, F.; d’Hendecourt, L. Diffuse Reflectance Infrared Fourier Transform Spectroscopy as a Tool to Characterise Water in Adsorption/Confinement Situations. J. Colloid Interface Sci. 2006, 304, 125–136. [Google Scholar] [CrossRef]
Test Description | Test Standard | Test Result | |
---|---|---|---|
Soil | Subgrade Soil | ||
USCS soil classification | ASTM D2487 | GP–GM | SP–SM |
Liquid limit (%) | UNE 103103 | Non plastic | Non plastic |
Plasticity index | UNE 103104 | Non plastic | Non plastic |
Free swelling | UNE 103601 | No swelling | No swelling |
Organic matter | UNE 103204 | 0.87% | 1.0% |
Soluble sulfate | UNE 103201 | 0.27% | 1.4% |
Optimum moisture (%) | UNE 103501 | 8.2% | 7% |
pH | EN-12457-2 | 11.8 | 8.11 |
Chemical Composition | Mass Fraction (%) | |||
---|---|---|---|---|
WPFA | Cement IV | Soil | Subgrade Soil | |
CaO | 48.86 | 35.33 | 35.3 | 38.74 |
SiO2 | 12.58 | 38.11 | 27.52 | 18.34 |
Al2O3 | 12.55 | 10.9 | 3.75 | 3.23 |
MgO | 1.82 | 1.51 | 0.97 | 0.88 |
Fe2O3 | 1.01 | 5.59 | 2.17 | 1.55 |
ClO | 2.28 | - | 0.06 | 0.04 |
TiO2 | 1.20 | 0.42 | 0.21 | 0.17 |
SO3 | 0.96 | 2.61 | 0.6 | 2.84 |
P2O5 | 0.8 | 2.72 | 1.14 | 1.10 |
Other | 1.6 | - | - | - |
LOI | 17.8 | 2.5 | 28.2 | 33.1 |
Free lime content | 6.36 | - | - | - |
Density (g/cm3) | 2.68 | 3.00 | - | - |
Soil + WPFA | Soil + Cement | |
---|---|---|
Binder content (wt of soil) | 5% | 3% |
Water content | 8.2% | 7% |
Modified proctor density | 1.98 g/cm3 | 2.05 g/cm3 |
UCS at 7 days | 3.04 MPa | 2.98 MPa |
Applied delay before compaction | 30 min | - |
Number of Samples | Samples | Wetting/Drying Condition |
---|---|---|
4 | S + F + W1 | 20 °C/95% RH |
4 | S + F + W1 | 5 °C/dry |
4 | Sg + S + F + W2 | 20 °C/95% RH |
4 | Sg + S + F + W2 | 5 °C/dry |
4 | S + F + W3 | 20 °C/95% RH |
4 | S + F + W3 | 5 °C/dry |
2 | S + C + W1 | 20 °C/95% RH |
2 | S + C + W1 | 5 °C/dry |
2 | Sg + S + C + W2 | 20 °C/95% RH |
2 | Sg + S + C + W2 | 5 °C/dry |
2 | S + C + W3 | 20 °C/95% RH |
2 | S + C + W3 | 5 °C/dry |
Specimen Type | Average Swelling Changes | Average Weight Changes |
---|---|---|
S + F +W1 (5 °C) | −0.14% | 1.44% |
Sg + S + F + W2 (5 °C) | −0.06% | 0.30% |
S + F + W3 (5 °C) | −0.03% | 1.78% |
S + F + W1 (20 °C) | −0.11% | 1.84% |
Sg + S + F + W2 (20 °C) | −0.10% | 0.73% |
S + F + W3 (20 °C) | −0.08% | 1.96% |
S + C + W1 (5 °C) | −0.05% | 0.44% |
Sg + S + C + W2 (5 °C) | −0.02% | 0.19% |
S + C + W3 (5 °C) | 0.02% | 0.02% |
S + C + W1 (20 °C) | −0.05% | 1.23% |
Sg + S + C + W2 (20 °C) | −0.09% | 0.40% |
S + C + W3 (20 °C) | −0.11% | 0.80% |
Wavenumber (cm−1) | Bond | Reference |
---|---|---|
470 | υ2 Si–O44− | 450 [38,39], 455 [40], 465 [41] |
525 | υ4 Si–O44− | 525 [40], 521 [42] |
604 | SO4 | 603.72 [13] |
671 | SO4 | 669.3 [13] |
693 | Si–O | 692 [41] |
712 | υ4 CO3 | 713 [43], 714 [42] |
780 | Al–O | 786 [39] |
800 | Al–O | 814 [39] |
851 | υ3 CO32− | 849 [42] |
875 | υ4 CO32− | 875 [40], 876 [42], 874 [44] |
1023 | Asymmetric stretching Si–O | 950–1100 [41] |
1060–1165 | υ3 SO42− | 1105 [40], 1113 [43], 1116.78 [13], 1116 [22], 1120 [45], 1141.95 [13], 1170 [45] |
1420–1430 | υ2 CO32− | 1425 [13,40], 1458 [42], 1460 [44], 1429 [46], 1422 [22] |
3420 | υ1 + υ3 H2O | 2700–3600 [44], 3433 [46], 3430 [47], 3425 [22], 3450 [38,40], 3444 [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baloochi, H.; Barra, M.; Aponte, D. Long-Term Comparison between Waste Paper Fly Ash and Traditional Binder as Hydraulic Road Binder Exposed to Sulfate Concentrations. Materials 2022, 15, 5424. https://doi.org/10.3390/ma15155424
Baloochi H, Barra M, Aponte D. Long-Term Comparison between Waste Paper Fly Ash and Traditional Binder as Hydraulic Road Binder Exposed to Sulfate Concentrations. Materials. 2022; 15(15):5424. https://doi.org/10.3390/ma15155424
Chicago/Turabian StyleBaloochi, Hani, Marilda Barra, and Diego Aponte. 2022. "Long-Term Comparison between Waste Paper Fly Ash and Traditional Binder as Hydraulic Road Binder Exposed to Sulfate Concentrations" Materials 15, no. 15: 5424. https://doi.org/10.3390/ma15155424
APA StyleBaloochi, H., Barra, M., & Aponte, D. (2022). Long-Term Comparison between Waste Paper Fly Ash and Traditional Binder as Hydraulic Road Binder Exposed to Sulfate Concentrations. Materials, 15(15), 5424. https://doi.org/10.3390/ma15155424