Solar Energy Materials-Evolution and Niche Applications: A Literature Review
Abstract
:1. Introduction
2. Overview of Solar Cell
2.1. Solar Cell Principle of Operation
2.1.1. Electronic Structure and Doping Mechanisms in Crystalline Silicon
Electronic Structure
Doping Mechanisms of Silicon Materials
- P-type Doping
- 2.
- N-type Doping
2.2. Important Parameters in a Solar Device
Principle of Charge Separation within a Solar Device
3. The First Generation Solar Cells
3.1. Crystalline Semiconductors
3.1.1. Nanomaterials
3.1.2. Conducting Polymers
3.2. Single and Poly-Crystalline
4. Second Generation Devices (Thin Film Solar Cells)
4.1. Amorphous Silicon (α-Si)
4.2. CdTe Thin Film
4.3. CIGS and CZTS Thin Films
Tin Antimony Sulfide
5. Third Generation
5.1. Quantum Dots (Nanocrystal Based)
5.2. Polymer Based Devices
p-Conjugated Polymers as Hole-Transporting Layers (HTLS)
5.3. Dye Sensitized Based Solar Cells
5.4. Perovskite Materials
6. Outlook
Future Prospects and Challenges
- ➢
- Use alternative sources of solar materials, such biomass, to minimize costs.
- ➢
- Use green technology, such as biomass (eco-friendly), a renewable source for solar materials.
- ➢
- Use hybrid organic-silicon heterojunction solar cells.
- ➢
- Employ solar-grade silicon from silica (metallothermic reduction as compared to carbothermal reduction process).
- ➢
- Enormous scientific research efforts in the past were devoted to the development and optimization of the following;
- ➢
- ETL, HTL, perovskite composition, thickness, process, and device structures.
- ➢
- The state-of-the-art perovskite and non-toxic solar cells will lead to the development and discovery of new Pb-free perovskite light absorber materials which are environmentally friendly and critical in the field of PVs. The new research area will be imperative in realizing stable and eco-friendly perovskite PVs for real-world applications.
7. Summary
Funding
Conflicts of Interest
References
- Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards sustainable energy: A systematic review of renewable energy sources, technologies, and public opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Kumar, M. Social, economic, and environmental impacts of renewable energy resources. In Wind Solar Hybrid Renewable Energy System; Intech Open: London, UK, 2020; Volume 1. [Google Scholar] [CrossRef]
- Ortiz de Zárate, D.; García-Meca, C.; Pinilla-Cienfuegos, E.; Ayúcar, J.A.; Griol, A.; Bellières, L.; Hontañón, E.; Kruis, F.E.; Martí, J. Green and sustainable manufacture of ultrapure engineered nanomaterials. Nanomaterials 2020, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.; Ponce, P.; Molina, A.; Wright, P. Sensing, smart and sustainable technologies for Agri-Food 4.0. Comput. Ind. 2019, 108, 21–36. [Google Scholar] [CrossRef]
- Feltrin, A.; Freundlich, A. Material considerations for terawatt level deployment of photovoltaics. Renew. Energy 2008, 33, 180–185. [Google Scholar] [CrossRef]
- Ahmed, K.; Ewees, A.A.; Aziz, M.A.E.; Hassanien, A.E.; Gaber, T.; Tsai, P.W.; Pan, J.S. A hybrid krill-ANFIS model for wind speed forecasting. In International Conference on Advanced Intelligent Systems and Informatics; Springer: Cham, Switzerland, 2016; pp. 365–372. [Google Scholar] [CrossRef]
- Charfeddine, L.; Kahia, M. Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis. Renew. Energy 2019, 139, 198–213. [Google Scholar] [CrossRef]
- Bullock, J.; Hettick, M.; Geissbühler, J.; Ong, A.J.; Allen, T.; Sutter-Fella, C.M.; Chen, T.; Ota, H.; Schaler, E.W.; De Wolf, S.; et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat. Energy 2016, 1, 1–7. [Google Scholar] [CrossRef]
- Valizadeh, M.; ALRubeei, I.R.N.; ALRikabi, H.T.S.; Abed, F.T. Enhancing the efficiency of photovoltaic power system by submerging it in the rivers. Telkomnika 2022, 20, 166–172. [Google Scholar] [CrossRef]
- Shiyani, T.; Bagchi, T. Hybrid nanostructures for solar-energy-conversion applications. Nanomater. Energy 2020, 9, 39–46. [Google Scholar] [CrossRef]
- Levi, D.H.; Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Hohl-Ebinger, J.; Ho-Baillie, A.W. Solar cell efficiency tables (version 51). Prog. Photovolt. 2017, 26. [Google Scholar] [CrossRef] [Green Version]
- Rohatgi, A.; Zhu, K.; Tong, J.; Kim, D.H.; Reichmanis, E.; Rounsaville, B.; Prakash, V.; Ok, Y.W. 26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE J. Photovolt. 2020, 10, 417–422. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl. Sci. Rev. 2020, 7, 1239–1246. [Google Scholar] [CrossRef]
- Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater. 2019, 31, 1902210. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62, 746–752. [Google Scholar] [CrossRef]
- Nair, S.; Patel, S.B.; Gohel, J.V. Recent trends in efficiency-stability improvement in perovskite solar cells. Mater. Today Energy 2020, 17, 100449. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.M.; Han, H.; Lee, J.; Ko, D.; Park, K.R.; Jang, K.B.; Kim, D.; Forrester, J.S.; Lee, S.H.; et al. Ti/TiO2/SiO2 multilayer thin films with enhanced spectral selectivity for optical narrow bandpass filters. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Terao, J. Synthesis of conjugated polyrotaxanes and its application to molecular wires. In Molecular Architectonics; Springer: Cham, Switzerland, 2017; pp. 487–512. [Google Scholar] [CrossRef]
- Ostroverkhova, O. Organic optoelectronic materials: Mechanisms and applications. Chem. Rev. 2016, 116, 13279–13412. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Y.; Zhang, Y.; Liu, Z.; Zhao, L. Quinoxaline-based conjugated polymers for polymer solar cells. Polym. Chem. 2017, 8, 4613–4636. [Google Scholar] [CrossRef]
- Murad, A.R.; Iraqi, A.; Aziz, S.B.; Abdullah, S.N.; Brza, M.A. Conducting polymers for optoelectronic devices and organic solar cells: A review. Polymers 2020, 12, 2627. [Google Scholar] [CrossRef]
- Moliton, A.; Hiorns, R.C. Review of electronic and optical properties of semiconducting π-conjugated polymers: Applications in optoelectronics. Polym. Int. 2004, 53, 1397–1412. [Google Scholar] [CrossRef]
- Andreão, P.V.; Suleiman, A.R.; Cordeiro, G.C.; Nehdi, M.L. Sustainable use of sugarcane bagasse ash in cement-based materials. Green Mater. 2019, 7, 61–70. [Google Scholar] [CrossRef]
- Savant, N.K.; Korndörfer, G.H.; Datnoff, L.E.; Snyder, G.H. Silicon nutrition and sugarcane production: A review. J. Plant Nutr. 1999, 22, 1853–1903. [Google Scholar] [CrossRef]
- Dhanjode, C.; Nag, A. Utilization of landfill waste in brick manufacturing: A review. Mater. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- Mustakim, S.M.; Das, S.K.; Mishra, J.; Aftab, A.; Alomayri, T.S.; Assaedi, H.S.; Kaze, C.R. Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon 2021, 13, 2415–2428. [Google Scholar] [CrossRef]
- Reddy, P.J. Science and Technology of Photovoltaics, 2nd ed.; CRC Press: Leiden, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Guo, Y.; Otley, M.T.; Li, M.; Zhang, X.; Sinha, S.K.; Treich, G.M.; Sotzing, G.A. PEDOT: PSS “wires” printed on textile for wearable electronics. ACS Appl. Mater. Interfaces 2016, 8, 26998–27005. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Krishna, J.V.; Mrinalini, M.; Prasanthkumar, S.; Giribabu, L. Recent advances on porphyrin dyes for dye-sensitized solar cells. Dye.-Sensitized Sol. Cells 2019, 231–284. [Google Scholar] [CrossRef]
- Kietzke, T. Recent advances in organic solar cells. Adv. OptoElectronics 2007, 2007, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Riede, M.; Spoltore, D.; Leo, K. Organic solar cells—the path to commercial success. Adv. Energy Mater. 2021, 11, 2002653. [Google Scholar] [CrossRef]
- Schopp, N.; Brus, V.V.; Lee, J.; Bazan, G.C.; Nguyen, T.Q. A Simple Approach for Unraveling Optoelectronic Processes in Organic Solar Cells under Short-Circuit Conditions. Adv. Energy Mater. 2021, 11, 2002760. [Google Scholar] [CrossRef]
- Abdulrazzaq, O.A.; Saini, V.; Bourdo, S.; Dervishi, E.; Biris, A.S. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 2013, 31, 427–442. [Google Scholar] [CrossRef]
- Calado, P.; Telford, A.M.; Bryant, D.; Li, X.; Nelson, J.; O’Regan, B.C.; Barnes, P.R. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Sundaram, S.; Shanks, K.; Upadhyaya, H. Thin Film Photovoltaics. In A Comprehensive Guide to Solar Energy Systems; Academic Press: Cambridge, MA, USA, 2018; pp. 361–370. [Google Scholar] [CrossRef]
- Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: The case for thin-film solar cells. Science 1999, 285, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, O.; Bodegård, M.; Malmström, J.; Stolt, L. Influence of the Cu (In, Ga) Se2 thickness and Ga grading on solar cell performance. Prog. Photovolt. Res. Appl. 2003, 11, 77–88. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Lin, S.; Liu, W.; Adam, J.; Madsen, M.; Rubahn, H.G.; Sun, Y. Numerical analysis on effects of experimental Ga grading on Cu (In, Ga) Se2 solar cell performance. J. Phys. Chem. Solids 2018, 120, 190–196. [Google Scholar] [CrossRef]
- Yu, K.J.; Yan, Z.; Han, M.; Rogers, J.A. Inorganic semiconducting materials for flexible and stretchable electronics. NPJ Flex. Electron. 2017, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gharahcheshmeh, M.H.; Gleason, K.K. Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Mater. Today Adv. 2020, 8, 100086. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Liu, Y. Toward Efficient Charge Transport of Polymer-Based Organic Field-Effect Transistors: Molecular Design, Processing, and Functional Utilization. Acc. Mater. Res. 2021, 2, 1047–1058. [Google Scholar] [CrossRef]
- Srinivasa, A. High Efficiency Undoped Silicon Heterojunction Solar Cells. Ph.D. Dissertation, Arizona State University, Chicago, IL, USA, 2020. [Google Scholar] [CrossRef]
- Zaidi, S.H. Crystalline Silicon Solar Cells; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Zonooz, P. Depositing Highly Crystalline Thin Film Silicon for Photovoltaic Solar Cells Utilizing Metal Surface Wave Plasmas. 2014. Available online: http://hdl.handle.net/2142/46597 (accessed on 16 January 2014).
- Bertolli, M. Solar Cell Materials. Course: Solid State II; Department of Physics; University of Tennessee: Knoxville, TN, USA, 2008. [Google Scholar]
- Saga, T. Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Mater. 2010, 2, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, P. Solar Energy Resource Assessment Handbook; Renewable Energy Corporation Network for the Asia Pacific; Maantienteen Laitos: Turk, Finland, 2009. [Google Scholar]
- Poplawsky, J.D.; Paudel, N.R.; Li, C.; Parish, C.M.; Leonard, D.; Yan, Y.; Pennycook, S.J. Direct imaging of Cl-and Cu-induced short-circuit efficiency changes in CdTe solar cells. Adv. Energy Mater. 2014, 4, 1400454. [Google Scholar] [CrossRef]
- Kumar, P. Efficient PbSe colloidal QDs for optoelectronics devices. In Nanoscale Compound Semiconductors and Their Optoelectronics Applications; Woodhead Publishing: Cambridge, UK, 2022; pp. 229–269. [Google Scholar] [CrossRef]
- Ali, N.; Hussain, A.; Ahmed, R.; Wang, M.K.; Zhao, C.; Haq, B.U.; Fu, Y.Q. Advances in nanostructured thin film materials for solar cell applications. Renew. Sustain. Energy Rev. 2016, 59, 726–737. [Google Scholar] [CrossRef]
- Todorov, T.K.; Bishop, D.M.; Lee, Y.S. Materials perspectives for next-generation low-cost tandem solar cells. Sol. Energy Mater. Sol. Cells 2018, 180, 350–357. [Google Scholar] [CrossRef]
- Chuang, C.H.M.; Brown, P.R.; Bulović, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796. [Google Scholar] [CrossRef] [Green Version]
- Gloeckler, M.; Sankin, I.; Zhao, Z. CdTe solar cells at the threshold to 20% efficiency. IEEE J. Photovolt. 2013, 3, 1389–1393. [Google Scholar] [CrossRef]
- Kurtz, S.; Repins, I.; Metzger, W.K.; Verlinden, P.J.; Huang, S.; Bowden, S.; Tappan, I.; Emery, K.; Kazmerski, L.L.; Levi, D. Historical analysis of champion photovoltaic module efficiencies. IEEE J. Photovolt. 2018, 8, 363–372. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, Y.; Cai, D. Homojunction and heterojunction based on CdTe polycrystalline thin films. Mater. Lett. 2009, 63, 2082–2084. [Google Scholar] [CrossRef]
- Dale, P.J.; Peter, L.M.; Loken, A.; Scragg, J. Towards sustainable photovoltaic solar energy conversion: Studies of new absorber materials. ECS Trans. 2009, 19, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Gong, X.G.; Walsh, A.; Wei, S.H. Crystal and electronic band structure of Cu 2 ZnSn X 4 (X= S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett. 2009, 94, 041903. [Google Scholar] [CrossRef] [Green Version]
- Bhosale, S.M.; Suryawanshi, M.P.; Gaikwad, M.A.; Bhosale, P.N.; Kim, J.H.; Moholkar, A.V. Influence of growth temperatures on the properties of photoactive CZTS thin films using a spray pyrolysis technique. Mater. Lett. 2014, 129, 153–155. [Google Scholar] [CrossRef]
- Nitsche, R.; Sargent, D.F.; Wild, P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport. J. Cryst. Growth 1967, 1, 52–53. [Google Scholar] [CrossRef]
- Zhang, S. (Ed.) Organic Nanostructured Thin Film Devices and Coatings for Clean Energy; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Abdelkader, D.; Rabeh, M.B.; Khemiri, N.; Kanzari, M. Investigation on optical properties of SnxSbySz sulfosalts thin films. Mater. Sci. Semicond. Process. 2014, 21, 14–19. [Google Scholar] [CrossRef]
- Ibrahim, I.D.; Kambole, C.; Eze, A.A.; Adeboje, A.O.; Sadiku, E.R.; Kupolati, W.K.; Jamiru, T.; Olagbenro, B.W.; Adekomaya, O. Nanostructured Materials and Composites for Renewable Energy. In Nanomaterials-Based Composite for Energy Applications; Apple Academic Press: Palm Bay, FL, USA, 2019; pp. 91–119. [Google Scholar] [CrossRef]
- Choi, Y.C.; Lee, D.U.; Noh, J.H.; Kim, E.K.; Seok, S.I. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Funct. Mater. 2014, 24, 3587–3592. [Google Scholar] [CrossRef]
- Choi, Y.C.; Seok, S.I. Efficient Sb2S3-Sensitized Solar Cells Via Single-Step Deposition of Sb2S3 Using S/Sb-Ratio-Controlled SbCl3-Thiourea Complex Solution. Adv. Funct. Mater. 2015, 25, 2892–2898. [Google Scholar] [CrossRef]
- Ito, S.; Tsujimoto, K.; Nguyen, D.C.; Manabe, K.; Nishino, H. Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int. J. Hydrog. Energy 2013, 38, 16749–16754. [Google Scholar] [CrossRef]
- Gödel, K.C.; Choi, Y.C.; Roose, B.; Sadhanala, A.; Snaith, H.J.; Seok, S.I.; Steiner, U.; Pathak, S.K. Efficient room temperature aqueous Sb 2 S 3 synthesis for inorganic–organic sensitized solar cells with 5.1% efficiencies. Chem. Commun. 2015, 51, 8640–8643. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Flores, A.M.; García-Gómez, N.A.; De la Parra-Arciniega, S.M.; Sánchez, E.M. Fabrication and characterization of a nanostructured TiO2/In2S3-Sb2S3/CuSCN extremely thin absorber (eta) solar cell. Semicond. Sci. Technol. 2016, 31, 085011. [Google Scholar] [CrossRef] [Green Version]
- Koley, S.; Cui, J.; Panfil, Y.E.; Banin, U. Coupled colloidal quantum dot molecules. Acc. Chem. Res. 2021, 54, 1178–1188. [Google Scholar] [CrossRef]
- Shaikh, J.S.; Shaikh, N.S.; Mali, S.S.; Patil, J.V.; Pawar, K.K.; Kanjanaboos, P.; Hong, C.K.; Kim, J.H.; Patil, P.S. Nanoarchitectures in dye-sensitized solar cells: Metal oxides, oxide perovskites and carbon-based materials. Nanoscale 2018, 10, 4987–5034. [Google Scholar] [CrossRef] [PubMed]
- Majdi, M.; Eskandari, M.; Fathi, D. Textured HTM-free perovskite/PbS quantum dot solar cell: Optical and electrical efficiency improvement by light trapping control. Sol. Energy 2021, 230, 618–627. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Liu, M.; Voznyy, O.; Sun, B.; Li, P.C.; Kung, H.; Ouellette, O.; Choi, M.J.; Lu, Z.H.; de Arquer, F.P.G.; et al. Accelerated solution-phase exchanges minimize defects in colloidal quantum dot solids. Nano Energy 2019, 63, 103876. [Google Scholar] [CrossRef]
- Kelley, M.L.; Letton, J.; Simin, G.; Ahmed, F.; Love-Baker, C.A.; Greytak, A.B.; Chandrashekhar, M.V.S. Photovoltaic and photoconductive action due to PbS quantum dots on graphene/SiC Schottky diodes from NIR to UV. ACS Appl. Electron. Mater. 2019, 2, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Rubino, A.; Caliò, L.; Calvo, M.E.; Míguez, H. Ligand-Free MAPbI3 Quantum Dot Solar Cells Based on Nanostructured Insulating Matrices. Sol. RRL 2021, 5, 2100204. [Google Scholar] [CrossRef]
- Kubie, L.; Beard, M.C. Thin-Film Colloidal Quantum Dot Solar Cells. In Advanced Micro-and Nanomaterials for Photovoltaics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 35–52. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, C.; Zhang, G.; Pan, Z.; Huang, Z.; Xu, S.; Rao, H.; Liu, H.; Wu, S.; Wu, X.; et al. All-Inorganic CsPbI3 Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Adv. Funct. Mater. 2021, 31, 2005930. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, L.; Zhao, H.; Xu, X.; Zhou, K.; Zhang, S.; Gou, L.; Fan, B.; Zhang, L.; Yan, H.; et al. Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells. Nano Energy 2019, 59, 277–284. [Google Scholar] [CrossRef]
- Tang, Z.; Tress, W.; Inganäs, O. Light trapping in thin film organic solar cells. Mater. Today 2014, 17, 389–396. [Google Scholar] [CrossRef]
- Sun, C.; Pan, F.; Chen, S.; Wang, R.; Sun, R.; Shang, Z.; Qiu, B.; Min, J.; Lv, M.; Meng, L.; et al. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater. 2019, 31, 1905480. [Google Scholar] [CrossRef]
- Yu, H.; Pan, M.; Sun, R.; Agunawela, I.; Zhang, J.; Li, Y.; Qi, Z.; Han, H.; Zou, X.; Zhou, W.; et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angew. Chem. 2021, 133, 10225–10234. [Google Scholar] [CrossRef]
- Sharma, S.; Siwach, B.; Ghoshal, S.K.; Mohan, D. Dye sensitized solar cells: From genesis to recent drifts. Renew. Sustain. Energy Rev. 2017, 70, 529–537. [Google Scholar] [CrossRef]
- Carella, A.; Borbone, F.; Centore, R. Research progress on photosensitizers for DSSC. Front. Chem. 2018, 6, 481. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res. Lett. 2018, 13, 1–46. [Google Scholar] [CrossRef]
- Thao, L.T.S.; Dang, T.T.T.; Khanitchaidecha, W.; Channei, D.; Nakaruk, A. Photocatalytic Degradation of Organic Dye under UV-A Irradiation Using TiO2-Vetiver Multifunctional Nano Particles. Materials 2017, 10, 122. [Google Scholar] [CrossRef]
- Zimmermann, E.; Pfadler, T.; Kalb, J.; Dorman, J.A.; Sommer, D.; Hahn, G.; Weickert, J.; Schmidt-Mende, L. Toward high-efficiency solution-processed planar heterojunction Sb2S3 solar cells. Adv. Sci. 2015, 2, 1500059. [Google Scholar] [CrossRef]
- Sun, J.; Li, F.; Yuan, J.; Ma, W. Advances in Metal Halide Perovskite Film Preparation: The Role of Anti-Solvent Treatment. Small Methods 2021, 5, 2100046. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, G.; Zhu, L.; Ye, J.; Zhang, X.; Alsaedi, A.; Hayat, T.; Pan, X.; Dai, S. The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasi-2D Perovskite Materials in Moist Condition. Adv. Energy Mater. 2018, 8, 1800051. [Google Scholar] [CrossRef]
- Konstantakou, M.; Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 11518–11549. [Google Scholar] [CrossRef]
- Noh, Y.W.; Lee, J.H.; Jin, I.S.; Park, S.H.; Jung, J.W. Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis. Nano Energy 2019, 65, 104014. [Google Scholar] [CrossRef]
- Bett, A.J.; Schulze, P.S.; Winkler, K.M.; Kabakli, Ö.S.; Ketterer, I.; Mundt, L.E.; Reichmuth, S.K.; Siefer, G.; Cojocaru, L.; Tutsch, L.; et al. Two-terminal perovskite silicon tandem solar cells with a high-bandgap perovskite absorber enabling voltages over 1.8 V. Prog. Photovolt. Res. Appl. 2020, 28, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Loópez-Porfiri, P.; Gorgojo, P.; Gonzalez-Miquel, M. Green solvent selection guide for biobased organic acid recovery. ACS Sustain. Chem. Eng. 2020, 8, 8958–8969. [Google Scholar] [CrossRef]
- Ulyashin, A.; Sytchkova, A. Hydrogen related phenomena at the ITO/a-Si: H/Si heterojunction solar cell interfaces. Phys. Status Solidi (A) 2013, 210, 711–716. [Google Scholar] [CrossRef]
- Du, H.W.; Yang, J.; Li, Y.H.; Xu, F.; Xu, J.; Ma, Z.Q. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering. Appl. Phys. Lett. 2015, 106, 093508. [Google Scholar] [CrossRef]
- Chauhan, R.N.; Singh, C.; Anand, R.S.; Kumar, J. Effect of sheet resistance and morphology of ITO thin films on polymer solar cell characteristics. Int. J. Photoenergy 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gwamuri, J.; Vora, A.; Khanal, R.R.; Phillips, A.B.; Heben, M.J.; Guney, D.O.; Bergstrom, P.; Kulkarni, A.; Pearce, J.M. Limitations of ultra-thin transparent conducting oxides for integration into plasmonic-enhanced thin-film solar photovoltaic devices. Mater. Renew. Sustain. Energy 2015, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seroka, N.S.; Taziwa, R.; Khotseng, L. Solar Energy Materials-Evolution and Niche Applications: A Literature Review. Materials 2022, 15, 5338. https://doi.org/10.3390/ma15155338
Seroka NS, Taziwa R, Khotseng L. Solar Energy Materials-Evolution and Niche Applications: A Literature Review. Materials. 2022; 15(15):5338. https://doi.org/10.3390/ma15155338
Chicago/Turabian StyleSeroka, Ntalane S., Raymond Taziwa, and Lindiwe Khotseng. 2022. "Solar Energy Materials-Evolution and Niche Applications: A Literature Review" Materials 15, no. 15: 5338. https://doi.org/10.3390/ma15155338
APA StyleSeroka, N. S., Taziwa, R., & Khotseng, L. (2022). Solar Energy Materials-Evolution and Niche Applications: A Literature Review. Materials, 15(15), 5338. https://doi.org/10.3390/ma15155338