Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation and Characterization of Gold Colloids
2.4. Preparation of SPF
2.5. Preparation of Film in a Polymer Matrix Samples
2.6. Analyte Used in the Study
2.7. Calculation of Enhancement and Reproducibility Parameters
3. Results and Discussion
3.1. Determination of Optimal Parameters for SPF Synthesis
3.2. Characterization of the Morphology of the SPF Samples with Maximum Values for the Average Map Intensity
3.3. Comparison of SERS Substrates Based on SPF in a Polymer Matrix
- This is a sample obtained by the method of one-step synthesis;
- The concentration of polystyrene is 4.5 mg/mL and TOABr 10−5 mol/L in the toluene phase;
- The size of gold nanoparticles is 20 nm.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Landsberg, L.; Mandelstam, G. Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenschaften 1928, 16, 557–558. [Google Scholar] [CrossRef]
- Raman, K.S.; Krishnan, C.V. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. Available online: https://ui.adsabs.harvard.edu/abs/1928Natur.121..501R/abstract (accessed on 19 December 2021). [CrossRef]
- Le, E.C.; Ru, P.G. Etchegoin, Quantifying SERS enhancements. MRS Bull. 2013, 38, 631–640. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shvalya, V.; Filipič, G.; Zavašnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Appl. Phys. Rev. 2020, 7, 031307. [Google Scholar] [CrossRef]
- Feng, J.; Xu, L.; Cui, G.; Wu, X.; Ma, W.; Kuang, H.; Xu, C. Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection. Biosens. Bioelectron. 2016, 81, 138–142. [Google Scholar] [CrossRef]
- Feng, Y.; Mo, R.; Wang, L.; Zhou, C.; Hong, P.; Li, C. Surface Enhanced Raman Spectroscopy Detection of Sodium Thiocyanate in Milk Based on the Aggregation of Ag Nanoparticles. Sensors 2019, 19, 1363. [Google Scholar] [CrossRef] [Green Version]
- Pooja, D.; Kumar, P.; Singh, P. Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Dugandžić, V.; Kupfer, S.; Jahn, M.; Henkel, T.; Weber, K.; Cialla-May, D.; Popp, J. A SERS-based molecular sensor for selective detection and quantification of copper(II) ions. Sens. Actuators B Chem. 2019, 279, 230–237. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Gao, N.; Fu, J.; Yue, X.; Lv, X.; Zhong, F.; Tang, J.; Wang, T. Facile synthesis of magnetic ionic liquids/gold nanoparticles/porous silicon composite SERS substrate for ultra-sensitive detection of arsenic. Appl. Surf. Sci. 2021, 545, 148992. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.; Hassan, M.; Zhu, J.; Ahmad, W.; Li, H.; Chen, Q. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, C.; Meng, G.; Wu, N. Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. [Google Scholar] [CrossRef]
- TZhu, T.; Yu, H.-Z.; Wang, J.; Wang, Y.; Cai, S.; Liu, Z. Two-dimensional surface enhanced Raman mapping of differently prepared gold substrates with an azobenzene self-assembled monolayer. Chem. Phys. Lett. 1997, 265, 334–340. [Google Scholar] [CrossRef]
- Bai, Z.; Dong, Y.; Wang, Z.; Zhu, T. Emission of ammonia from indoor concrete wall and assessment of human exposure. Environ. Int. 2006, 32, 303–311. [Google Scholar] [CrossRef]
- Li, P.; Long, F.; Chen, W.; Chen, J.; Chu, P.K.; Wang, H. Fundamentals and applications of surface-enhanced Raman spectroscopy–based biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 51–59. [Google Scholar] [CrossRef]
- Kang, T.; Zhu, J.; Luo, X.; Jia, W.; Wu, P.; Cai, C. Controlled Self-Assembly of a Close-Packed Gold Octahedra Array for SERS Sensing Exosomal MicroRNAs. Anal. Chem. 2021, 93, 2519–2526. [Google Scholar] [CrossRef]
- Lee, S.H.; Hwang, J.; Kim, K.; Jeon, J.; Lee, S.; Ko, J.; Lee, J.; Kang, M.; Chung, D.R.; Choo, J. Quantitative Serodiagnosis of Scrub Typhus Using Surface-Enhanced Raman Scattering-Based Lateral Flow Assay Platforms. Anal. Chem. 2019, 91, 12275–12282. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, L.; Zou, Y.; Song, Z.; Jin, S. Highly reproducible SERS sensor based on self-assembled Au nanocubic monolayer film for sensitive and quantitative detection of glutathione. Appl. Surf. Sci. 2021, 540, 148381. [Google Scholar] [CrossRef]
- Mei, R.; Wang, Y.; Liu, W.; Chen, L. Lipid Bilayer-Enabled Synthesis of Waxberry-like Core–Fluidic Satellite Nanoparticles: Toward Ultrasensitive Surface-Enhanced Raman Scattering Tags for Bioimaging. ACS Appl. Mater. Interfaces 2018, 10, 23605–23616. [Google Scholar] [CrossRef]
- Dina, N.E.; Gherman, A.M.R.; Chiş, V.; Sârbu, C.; Wieser, A.; Bauer, D.; Haisch, C. Characterization of Clinically Relevant Fungi via SERS Fingerprinting Assisted by Novel Chemometric Models. Anal. Chem. 2018, 90, 2484–2492. [Google Scholar] [CrossRef]
- Willets, K.A. Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering. Curr. Opin. Electrochem. 2019, 13, 18–24. [Google Scholar] [CrossRef]
- Lee, T.; Kwon, S.; Jung, S.; Lim, H.; Lee, J.-J. Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates. Nano Res. 2019, 12, 2554–2558. [Google Scholar] [CrossRef]
- Fu, Q.; Zhan, Z.; Dou, J.; Zheng, X.; Xu, R.; Wu, M.; Lei, Y. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. ACS Appl. Mater. Interfaces 2015, 7, 13322–13328. [Google Scholar] [CrossRef]
- Konshina, E.; Shcherbinin, D.; Abboud, M.; Bogdanov, K.; Gladskikh, I.; Polischuk, V. Hybrid nanostructures of plasmonic gold nanoparticles with a-C:H thin films. Appl. Surf. Sci. 2019, 471, 652–657. [Google Scholar] [CrossRef]
- Gromov, D.; Dubkov, S.; Savitskiy, A.; Shaman, Y.; Polokhin, A.; Belogorokhov, I.; Trifonov, A. Optimization of nanostructures based on Au, Ag, Au Ag nanoparticles formed by thermal evaporation in vacuum for SERS applications. Appl. Surf. Sci. 2019, 489, 701–707. [Google Scholar] [CrossRef]
- Fusco, Z.; Bo, R.; Wang, Y.; Motta, N.; Chen, H.; Tricoli, A. Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS. J. Mater. Chem. C 2019, 7, 6308–6316. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Yu, X.; Zhuang, X.; Wang, Q.; Jiang, N.; Hu, J. Recyclable and ultrasensitive SERS sensing platform: Deposition of atomically precise Ag152 nanoclusters on surface of plasmonic 3D ZnO-NC/AuNP arrays. Appl. Surf. Sci. 2021, 540, 148324. [Google Scholar] [CrossRef]
- Mandavkar, R.; Lin, S.; Kulkarni, R.; Pandit, S.; Burse, S.; Habib, A.; Pandey, P.; Kunwar, S.; Lee, J. Dual-step hybrid SERS scheme through the blending of CV and MoS2 NPs on the AuPt core-shell hybrid NPs. J. Mater. Sci. Technol. 2022, 107, 1–13. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Yu, J.; Li, Z.; Liu, L.; Li, C.; Xu, S.; Li, W.; Man, B.; Zhang, C. Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing. Nanophotonics 2020, 9, 4761–4773. [Google Scholar] [CrossRef]
- Naqvi, T.K.; Srivastava, A.K.; Kulkarni, M.M.; Siddiqui, A.M.; Dwivedi, P.K. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surf. Sci. 2019, 478, 887–895. [Google Scholar] [CrossRef]
- Volgina, D.A.; Stepanidenko, E.A.; Kormilina, T.K.; Cherevkov, S.A.; Dubavik, A.; Baranov, M.A.; Litvin, A.P.; Fedorov, A.V.; Baranov, A.V.; Takai, K.; et al. Study of the Optical Properties of CdZnSe/ZnS-Quantum Dot–Au-Nanoparticle Complexes. Opt. Spectrosc. 2018, 124, 494–500. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Intartaglia, R.; Rodio, M.; Abdellatif, M.; Prato, M.; Salerno, M. Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid. Materials 2016, 9, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khlebtsov, B.N.; Khanadeev, V.A.; Tsvetkov, M.Y.; Bagratashvili, V.N.; Khlebtsov, N.G. Surface-Enhanced Raman Scattering Substrates Based on Self-Assembled PEGylated Gold and Gold–Silver Core–Shell Nanorods. J. Phys. Chem. C 2013, 117, 23162–23171. [Google Scholar] [CrossRef]
- Konrad, M.P.; Doherty, A.P.; Bell, S.E.J. Stable and Uniform SERS Signals from Self-Assembled Two-Dimensional Interfacial Arrays of Optically Coupled Ag Nanoparticles. Anal. Chem. 2013, 85, 6783–6789. [Google Scholar] [CrossRef] [PubMed]
- Toccafondi, C.; Thorat, S.; La Rocca, R.; Scarpellini, A.; Salerno, M.; Dante, S.; Das, G. Multifunctional substrates of thin porous alumina for cell biosensors. J. Mater. Sci. Mater. Med. 2014, 25, 2411–2420. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-H.; Kim, J.H.; Choi, J.-Y.; Shin, C.H.; Kim, J.-H.; Bae, G.-T.; Shin, K.S. Tuning the interparticle distances in self-assembled gold nanoparticle films with their plasmonic responses. Chem. Phys. Lett. 2019, 715, 91–99. [Google Scholar] [CrossRef]
- Velleman, L.; Sikdar, D.; Turek, V.A.; Kucernak, A.R.; Roser, S.J.; Kornyshev, A.A.; Edel, J.B. Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces. Nanoscale 2016, 8, 19229–19241. [Google Scholar] [CrossRef] [Green Version]
- Velleman, L.; Scarabelli, L.; Sikdar, D.; Kornyshev, A.A.; Liz-Marzán, L.M.; Edel, J.B. Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation. Faraday Discuss. 2017, 205, 67–83. [Google Scholar] [CrossRef]
- Tian, L.; Su, M.; Yu, F.; Xu, Y.; Li, X.; Li, L.; Liu, H.; Tan, W. Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays. Nat. Commun. 2018, 9, 3642. [Google Scholar] [CrossRef]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Turkevich, J.; Garton, G.; Stevenson, P. The color of colloidal gold. J. Colloid Sci. 1954, 9, 26–35. [Google Scholar] [CrossRef]
- Akins, D.L.; Macklin, J.W.; Zhu, H.R. Visible Raman and near-Infrared Fourier Transform Raman characterization of adsorbed 4,4′-cyanine. J. Phys. Chem. 1992, 96, 4515–4521. [Google Scholar] [CrossRef]
- Akins, D.L.; Akpabli, C.K.; Li, X. Surface potential dependence of enhanced Raman bands of aggregated cyanine dyes. J. Phys. Chem. 1989, 93, 1977–1984. [Google Scholar] [CrossRef]
- Khnykina, K.A.; Baranov, M.A.; Babaev, A.A.; Dubavik, A.Y.; Fedorov, A.V.; Baranov, A.V.; Bogdanov, K.V. Comparison study of Surface-enhanced Raman spectroscopy substrates. J. Phys. Conf. Ser. 2021, 1984, 012020. [Google Scholar] [CrossRef]
- Khnykina, K.; Baranov, M.; Babaev, A.; Baranov, A.; Bogdanov, K.V. Key Factors for Tuning Au Self-Assembling SERS Films: From Properties to Structure. Opt. Spectrosc. 2021, 129, 527–536. [Google Scholar] [CrossRef]
Modifier | Size of Gold Spherical Nanoparticles, nm | Percentage Data Gate (%MG), % |
---|---|---|
TOABr | 10 | 62 |
TOABr | 20 | 28 |
TOABr | 40 | 72 |
TOABr | lamellar 60 × 40 × 20 | 87 |
TBAN | 10 | 71 |
TBAN | 20 | 49 |
TBAN | 40 | 59 |
TBAN | lamellar 60 × 40 × 20 | 56 |
Polymer Type | Type of Synthesis and Resulting Sample | Average Intensity (1364 cm−1) of Sample Map Data (AIM), a.u. | Percentage Data Gate (%MG), % |
---|---|---|---|
Polystyrene | One-step SPF synthesis; SPF-PS-1 | 6.84 | 30.84 |
Two-step SPF synthesis; SPF-PS-2 | 2.11 | 90.18 | |
Two-step SPF synthesis; SPF-PS-2 | 8.10 | 91.33 | |
Polyvinyl alcohol | One-step SPF synthesis; SPF-PVA-1 | 5.22 | 68.96 |
Two-step SPF synthesis; SPF-PVA-2 | 5.14 | 94.54 | |
Two-step SPF synthesis; SPF-PVA-2 | 2.09 | 65.54 | |
Polyethylene | Direct synthesis; SPF-PE | 3.35 | 37.44 |
Direct synthesis; SPF-PE | 0.52 | 153 |
SPF Synthesis Substrate | Average Intensity (1364 cm−1) of Sample Map Data (AIM), a.u. | Percentage Data Gate (%MG), % |
---|---|---|
Glass | 5.22 | 68.96 |
Glass Au-top side | 5.14 | 94.54 |
Glass Au-down side | 2.09 | 65.54 |
Teflon | 7.82 | 41.71 |
Teflon Au-down side | 1.65 | 64.98 |
Teflon Au-top side | 9.22 | 27.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleeva, K.A.; Kaliya, I.E.; Tkach, A.P.; Babaev, A.A.; Baranov, M.A.; Berwick, K.; Perova, T.S.; Baranov, A.V.; Bogdanov, K.V. Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates. Materials 2022, 15, 5197. https://doi.org/10.3390/ma15155197
Maleeva KA, Kaliya IE, Tkach AP, Babaev AA, Baranov MA, Berwick K, Perova TS, Baranov AV, Bogdanov KV. Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates. Materials. 2022; 15(15):5197. https://doi.org/10.3390/ma15155197
Chicago/Turabian StyleMaleeva, Ksenia A., Ilia E. Kaliya, Anton P. Tkach, Anton A. Babaev, Michail A. Baranov, Kevin Berwick, Tatiana S. Perova, Alexander V. Baranov, and Kirill V. Bogdanov. 2022. "Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates" Materials 15, no. 15: 5197. https://doi.org/10.3390/ma15155197
APA StyleMaleeva, K. A., Kaliya, I. E., Tkach, A. P., Babaev, A. A., Baranov, M. A., Berwick, K., Perova, T. S., Baranov, A. V., & Bogdanov, K. V. (2022). Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates. Materials, 15(15), 5197. https://doi.org/10.3390/ma15155197