Effects of In-Process Ultrasonic Vibration on Weld Formation and Grain Size of Wire and Arc Additive Manufactured Parts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up and Materials
2.2. Experimental Method
2.3. Determination of Ultrasonic Vibration Frequency
3. Results and Discussion
3.1. Effect of Ultrasonic Amplitude on Weld
3.2. Effect of Wire Feed Speed and Welding Speed on Weld
3.3. Effect of Ultrasonic Vibration on the Average Grain Size of the Microstructure
4. Conclusions
- With the increase of ultrasonic amplitude, the weld width became wider and the reinforcement becomes lower. When the ultrasonic amplitude was too large and exceeded the ultimate tensile strength that could be endured in the state, the weld cracked without fully spreading.
- Under ultrasonic vibration with an amplitude of 20 μm, increased welding speed resulted in reduced weld width and reinforcement. With the increase of wire feed speed, the weld width increased, and reinforcement first increased slightly and then decreased.
- Average grain size decreased with decreasing wire feed speed and increasing welding speed. When the ultrasonic amplitude increased, the average grain size first decreased and then increased.
- The significant effect of the interaction between parameters on the average grain size is as follows: welding speed and ultrasonic amplitude > wire feed speed and welding speed > wire feed speed and ultrasonic amplitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 2016, 32, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Karunakaran, K.P.; Bernard, A.; Suryakumar, S.; Dembinski, L.; Taillandier, G. Rapid Manufacturing of Metallic Objects. Rapid Prototyp. J. 2012, 18, 264–280. [Google Scholar] [CrossRef]
- Liu, D.; Lee, B.; Babkin, A.; Chang, Y. Research Progress of Arc Additive Manufacture Technology. Materials 2021, 14, 1415. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, S.k.; Rathod, D.W. A Review on Process Planning Strategies and Challenges of WAAM. Mater. Today Proc. 2021, 47, 6564–6575. [Google Scholar] [CrossRef]
- Vimal, K.E.K.; Naveen Srinivas, M.; Rajak, S. Wire Arc Additive Manufacturing of Aluminium Alloys: A Review. Mater. Today Proc. 2019, 41, 1139–1145. [Google Scholar] [CrossRef]
- Elrefaey, A. Effectiveness of Cold Metal Transfer Process for Welding 7075 Aluminium Alloys. Sci. Technol. Weld. Join. 2015, 20, 280–285. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 22, 672–686. [Google Scholar] [CrossRef]
- Langelandsvik, G.; Akselsen, O.M.; Furu, T.; Furu, T. Review of Aluminum Alloy Development for Wire Arc. Materials 2021, 14, 5370. [Google Scholar] [CrossRef]
- Baufeld, B.; Brandl, E.; Van Der Biest, O. Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti–6Al–4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition. J. Mater. Process. Technol. 2011, 211, 1146–1158. [Google Scholar] [CrossRef]
- Brandl, E.; Baufeld, B.; Leyens, C.; Gault, R. Additive Manufactured Ti-6Al-4V Using Welding Wire: Comparison of Laser and Arc Beam Deposition and Evaluation with Respect to Aerospace Material Specifications. Phys. Procedia 2010, 5, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Ding, J.; Williams, S.W.; Gu, H.; Bai, J.; Zhai, Y.; Ma, P. The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al–6.3Cu Alloy. Mater. Sci. Eng. A 2016, 651, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Cuiuri, D.; Li, H.; Pan, Z.; Shen, C. The Effect of Postproduction Heat Treatment on γ-TiAl Alloys Produced by the GTAW-Based Additive Manufacturing Process. Mater. Sci. Eng. A 2016, 657, 86–95. [Google Scholar] [CrossRef]
- Colegrove, P.A.; Coules, H.E.; Fairman, J.; Martina, F.; Kashoob, T.; Mamash, H.; Cozzolino, L.D. Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts through High-Pressure Rolling. J. Mater. Process. Technol. 2013, 213, 1782–1791. [Google Scholar] [CrossRef]
- Huang, J.; Ye, X.; Xu, Z. Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 301LN Metastable Austenitic Stainless Steels. J. Iron Steel Res. Int. 2012, 19, 59–63. [Google Scholar] [CrossRef]
- Martina, F.; Colegrove, P.A.; Williams, S.W.; Meyer, J. Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 6103–6118. [Google Scholar] [CrossRef] [Green Version]
- Martina, F.; Roy, M.J.; Szost, B.A.; Terzi, S.; Colegrove, P.A.; Williams, S.W.; Withers, P.J.; Meyer, J.; Hofmann, M. Residual Stress of As-Deposited and Rolled Wire+arc Additive Manufacturing Ti–6Al–4V Components. Mater. Sci. Technol. 2016, 32, 1439–1448. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Fei, Z. The Effects of Forced Interpass Cooling on the Material Properties of Wire Arc Additively Manufactured Ti6Al4V Alloy. J. Mater. Process. Technol. 2018, 258, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Colegrove, P.A.; Donoghue, J.; Martina, F.; Gu, J.; Prangnell, P.; Hönnige, J. Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components. Scr. Mater. 2017, 135, 111–118. [Google Scholar] [CrossRef]
- Cheng, X.; Fisher, J.W.; Prask, H.J.; Gnäupel-Herold, T.; Yen, B.T.; Roy, S. Residual Stress Modification by Post-Weld Treatment and Its Beneficial Effect on Fatigue Strength of Welded Structures. Int. J. Fatigue 2003, 25, 1259–1269. [Google Scholar] [CrossRef]
- Yuan, T.; Kou, S.; Luo, Z. Grain Refining by Ultrasonic Stirring of the Weld Pool. Acta Mater. 2016, 106, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Shen, J.; Hu, S.; Wang, Z.; Gou, J. Effects of Ultrasonic Vibration in the CMT Process on Welded Joints of Al Alloy. J. Mater. Process. Technol. 2018, 259, 282–291. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Ning, F.; Cong, W. Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Effects of Ultrasonic Frequency on Microstructural and Mechanical Properties. J. Mater. Process. Technol. 2020, 276, 116395. [Google Scholar] [CrossRef]
- Chen, C.; Fan, C.; Liu, Z.; Cai, X.; Lin, S.; Zhuo, Y. Microstructure Evolutions and Properties of Al–Cu Alloy Joint in the Pulsed Power Ultrasonic-Assisted GMAW. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 1397–1406. [Google Scholar] [CrossRef]
- Gorunov, A.I. Additive Manufacturing of Ti6Al4V Parts Using Ultrasonic Assisted Direct Energy Deposition. J. Manuf. Process. 2020, 59, 545–556. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, F.; Xu, D.; Guo, C.; Zhao, C.; Wang, Z.; Wang, J. A Calculation Model to Predict the Impact Stress Field and Depth of Plastic Deformation Zone of Additive Manufactured Parts in the Process of Ultrasonic Impact Treatment. J. Mater. Process. Technol. 2020, 280, 116599. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Guo, C.; Zhao, C.; Jiang, G.; Dong, T.; Jiang, F. Numerical Study of the Ultrasonic Impact on Additive Manufactured Parts. Int. J. Mech. Sci. 2021, 197, 106334. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Zhang, T.; Wen, T.; Yin, Z.; Feng, X. Effect of Ultrasonic Vibration and Interpass Temperature on Microstructure and Mechanical Properties of Cu-8Al-2Ni-2Fe-2Mn Alloy Fabricated by Wire Arc Additive Manufacturing. Metals 2020, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Huu Phan, N.; Muthuramalingam, T. Multi Criteria Decision Making of Vibration Assisted EDM Process Parameters on Machining Silicon Steel Using Taguchi-DEAR Methodology. Silicon 2021, 13, 1879–1885. [Google Scholar] [CrossRef]
- Huu Phan, N.; Muthuramalingam, T. Multi-Criteria Decision-Making of Vibration-Aided Machining for High Silicon-Carbon Tool Steel with Taguchi–Topsis Approach. Silicon 2021, 13, 2771–2783. [Google Scholar] [CrossRef]
- Ma, Q.; Chen, H.; Ren, N.; Zhang, Y.; Hu, L.; Meng, W.; Yin, X. Effects of Ultrasonic Vibration on Microstructure, Mechanical Properties, and Fracture Mode of Inconel 625 Parts Fabricated by Cold Metal Transfer Arc Additive Manufacturing. J. Mater. Eng. Perform. 2021, 30, 6808–6820. [Google Scholar] [CrossRef]
- Yuan, D.; Shao, S.; Guo, C.; Jiang, F.; Wang, J. Grain Refining of Ti-6Al-4V Alloy Fabricated by Laser and Wire Additive Manufacturing Assisted with Ultrasonic Vibration. Ultrason. Sonochem. 2021, 73, 105472. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Sun, X.; Sun, L.; Zhang, Z.; Guo, C.; Wang, J.; Jiang, F. Improvement of the Grain Structure and Mechanical Properties of Austenitic Stainless Steel Fabricated by Laser and Wire Additive Manufacturing Assisted with Ultrasonic Vibration. Mater. Sci. Eng. A 2021, 813, 141177. [Google Scholar] [CrossRef]
- Todaro, C.J.; Easton, M.A.; Qiu, D.; Brandt, M.; StJohn, D.H.; Qian, M. Grain Refinement of Stainless Steel in Ultrasound-Assisted Additive Manufacturing. Addit. Manuf. 2021, 37, 101632. [Google Scholar] [CrossRef]
- Sun, L.; Guo, C.; Huang, L.; Jiang, F.; Xu, K.; Huang, R. Effect and Mechanism of Inter-Layer Ultrasonic Impact Strengthening on the Anisotropy of Low Carbon Steel Components Fabricated by Wire and Arc Additive Manufacturing. Mater. Sci. Eng. A 2022, 848, 143382. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, M.; Zhang, T.; Xie, J.; Wei, K.; Wang, S.; Yin, L.; He, P. Grain Refinement and Mechanical Properties Improvement of Inconel 625 Alloy Fabricated by Ultrasonic-Assisted Wire and Arc Additive Manufacturing. J. Alloys Compd. 2022, 910, 164957. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W. Ultrasonic Vibration-Assisted (UV-A) Manufacturing Processes: State of the Art and Future Perspectives. J. Manuf. Process. 2020, 51, 174–190. [Google Scholar] [CrossRef]
- Plesset, M.S.; Prosperetti, A. Bubble Dynamics and Cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [Google Scholar] [CrossRef]
- Leighton, T.G. The Rayleigh-Plesset Equation in Terms of Volume with Explicit Shear Losses. Ultrasonics 2008, 48, 85–90. [Google Scholar] [CrossRef]
- Du, J.; Chen, F. Cavitation Dynamics and Flow Aggressiveness in Ultrasonic Cavitation Erosion. Int. J. Mech. Sci. 2021, 204, 106545. [Google Scholar] [CrossRef]
- Tian, H.; Yang, C.; Liao, Z. Numerical Simulation of Cavitation Bubble Dynamics Based on Different Frame Rayleigh-Plesset Equation. In Proceedings of the 2008 Asia Simulation Conference—7th International Conference on System Simulation and Scientific Computing, Beijing, China, 10–12 October 2008; pp. 1312–1316. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Y.; Yang, F. Numerical Simulation on the Dynamics for the Ultrasonic Cavitation Bubble in Chitosan Solution. Appl. Mech. Mater. 2013, 275–277, 628–634. [Google Scholar] [CrossRef]
- Wei, R.; Lv, X.; Yang, M. Numerical Simulation of Ultrasound-Induced Cavitation Bubbling in a Calcium Ferrite Melt. In TMS Annual Meeting & Exhibition; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; Part F10; pp. 115–121. [Google Scholar] [CrossRef]
- Ji, F.; Qin, X.; Hu, Z.; Xiong, X.; Ni, M.; Wu, M. Influence of Ultrasonic Vibration on Molten Pool Behavior and Deposition Layer Forming Morphology for Wire and Arc Additive Manufacturing. Int. Commun. Heat Mass Transf. 2022, 130, 105789. [Google Scholar] [CrossRef]
Material | Si | Fe | Cu | Mn | Mg | Zn | Cr | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
ER4043 | 4.5–6 | 0.8 | 0.3 | 0.05 | 0.05 | 0.1 | 0.2 | Bal. | |
6061 Al | 0.4–0.8 | 0.7 | 0.15–0.4 | 0.15 | 0.8–1.2 | 0.25 | 0.04–0.35 | 0.15 | Bal. |
S.NO. | Wire Feed Speed (m/min) | Welding Speed (m/min) | Amplitude (μm) | Shielding Gas Flow Rate (L/min) |
---|---|---|---|---|
1 | 4.5 | 0.3 | 0 | 20 |
2 | 4.5 | 0.3 | 20 | 20 |
3 | 4.5 | 0.3 | 25 | 20 |
4 | 4.5 | 0.3 | 30 | 20 |
5 | 4.5 | 0.3 | 35 | 20 |
S. NO. | Wire Feed Speed (m/min) | Welding Speed (m/min) | Welding Voltage (V) | Welding Current (A) | Heat Input (J/mm) | Amplitude (μm) | Shielding Gas Flow Rate (L/min) |
---|---|---|---|---|---|---|---|
1 | 4 | 0.3 | 12 | 69 | 149.04 | 20 | 20 |
2 | 5 | 0.3 | 12.6 | 85 | 192.78 | 20 | 20 |
3 | 6 | 0.3 | 15.3 | 127 | 349.758 | 20 | 20 |
4 | 7 | 0.3 | 16.8 | 158 | 477.792 | 20 | 20 |
5 | 4 | 0.45 | 12 | 69 | 99.36 | 20 | 20 |
6 | 5 | 0.45 | 12.6 | 85 | 128.52 | 20 | 20 |
7 | 6 | 0.45 | 15.3 | 127 | 233.172 | 20 | 20 |
8 | 7 | 0.45 | 16.8 | 158 | 318.528 | 20 | 20 |
9 | 4 | 0.6 | 12 | 69 | 74.52 | 20 | 20 |
10 | 5 | 0.6 | 12.6 | 85 | 96.39 | 20 | 20 |
11 | 6 | 0.6 | 15.3 | 127 | 174.879 | 20 | 20 |
12 | 7 | 0.6 | 16.8 | 158 | 238.896 | 20 | 20 |
Factor Level | Wire Feed Speed (m/min) | Welding Speed (m/min) | Ultrasonic Amplitude (μm) |
---|---|---|---|
−1 | 4.5 | 0.3 | 20 |
0 | 5 | 0.4 | 24 |
+1 | 5.5 | 0.5 | 28 |
Exp. NO. | Wire Feed Speed (m/min) | Welding Speed (m/min) | Ultrasonic Amplitude (μm) | Average Grain Size (μm) |
---|---|---|---|---|
1 | 4.5 | 0.4 | 28 | 13.3 |
2 | 5 | 0.4 | 24 | 11.4265 |
3 | 4.5 | 0.3 | 24 | 14.3 |
4 | 5 | 0.3 | 20 | 15.3 |
5 | 5.5 | 0.3 | 24 | 15.5 |
6 | 4.5 | 0.4 | 20 | 12.41 |
7 | 5.5 | 0.4 | 20 | 13.11 |
8 | 5 | 0.4 | 24 | 11.7 |
9 | 5 | 0.5 | 28 | 13.7 |
10 | 4.5 | 0.5 | 24 | 10.84 |
11 | 5.5 | 0.5 | 24 | 12.74 |
12 | 5 | 0.4 | 24 | 11.9 |
13 | 5 | 0.4 | 24 | 11.45 |
14 | 5 | 0.3 | 28 | 15.06 |
15 | 5 | 0.4 | 24 | 11.7 |
16 | 5.5 | 0.4 | 28 | 13.55 |
17 | 5 | 0.5 | 20 | 11.51 |
Source | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|
Model | 34.08 | 3.79 | 28.64 | 0.0001 |
A-wire feed speed | 2.05 | 2.05 | 15.51 | 0.0056 |
B-welding speed | 16.16 | 16.16 | 122.24 | <0.0001 |
C-ultrasonic amplitude | 1.34 | 1.34 | 10.17 | 0.0153 |
AB | 0.1225 | 0.1225 | 0.9267 | 0.3678 |
AC | 0.0506 | 0.0506 | 0.3830 | 0.5556 |
BC | 1.48 | 1.48 | 11.17 | 0.0124 |
A2 | 0.8711 | 0.8711 | 6.59 | 0.0372 |
B2 | 6.63 | 6.63 | 50.15 | 0.0002 |
C2 | 4.23 | 4.23 | 32.00 | 0.0008 |
Residual | 0.9253 | 0.1322 | ||
Lack of fit | 0.77 | 0.26 | 6.56 | 0.0504 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xing, Y.; Zhang, J.; Cao, J.; Yang, F.; Zhang, X. Effects of In-Process Ultrasonic Vibration on Weld Formation and Grain Size of Wire and Arc Additive Manufactured Parts. Materials 2022, 15, 5168. https://doi.org/10.3390/ma15155168
Zhang J, Xing Y, Zhang J, Cao J, Yang F, Zhang X. Effects of In-Process Ultrasonic Vibration on Weld Formation and Grain Size of Wire and Arc Additive Manufactured Parts. Materials. 2022; 15(15):5168. https://doi.org/10.3390/ma15155168
Chicago/Turabian StyleZhang, Jun, Yanfeng Xing, Jijun Zhang, Juyong Cao, Fuyong Yang, and Xiaobing Zhang. 2022. "Effects of In-Process Ultrasonic Vibration on Weld Formation and Grain Size of Wire and Arc Additive Manufactured Parts" Materials 15, no. 15: 5168. https://doi.org/10.3390/ma15155168
APA StyleZhang, J., Xing, Y., Zhang, J., Cao, J., Yang, F., & Zhang, X. (2022). Effects of In-Process Ultrasonic Vibration on Weld Formation and Grain Size of Wire and Arc Additive Manufactured Parts. Materials, 15(15), 5168. https://doi.org/10.3390/ma15155168