A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants
Abstract
:1. Introduction
2. Anodic Oxidation
3. Anodic Oxidation on Titanium and TiNbSn Alloy
4. Biocompatibility of Anodized TiNbSn Alloy
5. Photocatalytic Activity of Anodized TiNbSn Alloy
6. Future Research Development
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
E. coli | Escherichia coli |
EDX | Energy dispersive X-ray spectroscopy |
H2O2 | Hydrogen peroxide |
MB | Methylene blue |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSSA | Methicillin-sensitive Staphylococcus aureus |
•OH | Hydroxyl radicals |
ROS | Reactive oxygen radicals |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscope |
TiO2 | Titanium dioxide |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray Diffraction |
References
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, B.T.; Barlow, D.R.; Heagerty, N.E.; Lin, T.J. Anterior vs. Posterior Approach for Total Hip Arthroplasty, a Systematic Review and Meta-analysis. J. Arthroplast. 2015, 30, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Klapach, A.S.; Callaghan, J.J.; Goetz, D.D.; Olejniczak, J.P.; Johnston, R.C. Charnley Total Hip Arthroplasty with Use of Improved Cementing Techniques: A Minimum Twenty-Year Follow-Up Study. J. Bone Jt. Surg. Am. 2001, 83, 1840–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, J.J.; Bracha, P.; Liu, S.S.; Piyaworakhun, S.; Goetz, D.D.; Johnston, R.C. Survivorship of a Charnley Total Hip Arthroplasty. A Concise Follow-Up, at a Minimum of Thirty-Five Years, of Previous Reports. J. Bone Jt. Surg. Am. 2009, 91, 2617–2621. [Google Scholar] [CrossRef] [Green Version]
- Bourne, R.B.; Rorabeck, C.H.; Patterson, J.J.; Guerin, J. Tapered Titanium Cementless Total Hip Replacements: A 10- to 13-Year Followup Study. Clin. Orthop. Relat. Res. 2001, 393, 112–120. [Google Scholar] [CrossRef]
- Capello, W.N.; D’Antonio, J.A.; Jaffe, W.L.; Geesink, R.G.; Manley, M.T.; Feinberg, J.R. Hydroxyapatite-Coated Femoral Components: 15-Year Minimum Followup. Clin. Orthop. Relat. Res. 2006, 453, 75–80. [Google Scholar] [CrossRef]
- Engh, C.A., Jr.; Mohan, V.; Nagowski, J.P.; Sychterz Terefenko, C.J.; Engh, C.A., Sr. Influence of Stem Size on Clinical Outcome of Primary Total Hip Arthroplasty with Cementless Extensively Porous-Coated Femoral Components. J. Arthroplast. 2009, 24, 554–559. [Google Scholar] [CrossRef]
- Huiskes, R. The Various Stress Patterns of Press-Fit, Ingrown, and Cemented Femoral Stems. Clin. Orthop. Relat. Res. 1990, 261, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Van Rietbergen, B.; Huiskes, R.; Weinans, H.; Sumner, D.R.; Turner, T.M.; Galante, J.O. ESB Research Award 1992. The Mechanism of Bone Remodeling and Resorption Around Press-Fitted THA Stems. J. Biomech. 1993, 26, 369–382. [Google Scholar] [CrossRef]
- Engh, C.A.; Bobyn, J.D.; Glassman, A.H. Porous-Coated Hip Replacement. The Factors Governing Bone Ingrowth, Stress Shielding, and Clinical Results. J. Bone Jt. Surg. Br. 1987, 69, 45–55. [Google Scholar] [CrossRef]
- Engh, C.A., Jr.; Young, A.M.; Engh, C.A., Sr.; Hopper, R.H., Jr. Clinical Consequences of Stress Shielding After Porous-Coated Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 2003, 417, 157–163. [Google Scholar] [CrossRef]
- Lindahl, H. Epidemiology of Periprosthetic Femur Fracture Around a Total Hip Arthroplasty. Injury 2007, 38, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Sato, T.; Yamamoto, T.; Motomura, G.; Ohishi, M.; Hamai, S.; Akiyama, M.; Hirata, M.; Hara, D.; Iwamoto, Y. Results at a Minimum of 10 Years of Follow-Up for AMS and PerFix HA-Coated Cementless Total Hip Arthroplasty: Impact of Cross-Linked Polyethylene on Implant Longevity. J. Orthop. Sci. 2013, 18, 962–968. [Google Scholar] [CrossRef]
- Rho, J.Y.; Ashman, R.B.; Turner, C.H. Young’s Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements. J. Biomech. 1993, 26, 111–119. [Google Scholar] [CrossRef]
- Miura, K.; Yamada, N.; Hanada, S.; Jung, T.K.; Itoi, E. The Bone Tissue Compatibility of a New Ti-Nb-Sn Alloy with a Low Young’s Modulus. Acta Biomater. 2011, 7, 2320–2326. [Google Scholar] [CrossRef]
- Hanada, S.; Masahashi, N.; Jung, T.K.; Yamada, N.; Yamako, G.; Itoi, E. Fabrication of a High-Performance Hip Prosthetic Stem Using Beta Ti-33.6Nb-4Sn. J. Mech. Behav. Biomed. Mater. 2014, 30, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, D.; Yamada, N.; Mori, Y.; Oyama, M.; Ohtsu, S.; Kuwahara, Y.; Baba, K.; Tanaka, H.; Aizawa, T.; Hanada, S.; et al. Mid-term Results of a New Femoral Prosthesis Using Ti-Nb-Sn Alloy with Low Young’s Modulus. BMC Musculoskelet. Disord. 2021, 22, 987. [Google Scholar] [CrossRef]
- Fujisawa, H.; Mori, Y.; Kogure, A.; Tanaka, H.; Kamimura, M.; Masahashi, N.; Hanada, S.; Itoi, E. Effects of Intramedullary Nails Composed of a New Beta-Type Ti-Nb-Sn Alloy with Low Young’s Modulus on Fracture Healing in Mouse Tibiae. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2841–2848. [Google Scholar] [CrossRef]
- Kogure, A.; Mori, Y.; Tanaka, H.; Kamimura, M.; Masahashi, N.; Hanada, S.; Itoi, E. Effects of Elastic Intramedullary Nails Composed of Low Young’s Modulus Ti-Nb-Sn Alloy on Healing of Tibial Osteotomies in Rabbits. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 700–707. [Google Scholar] [CrossRef]
- Mori, Y.; Fujisawa, H.; Kamimura, M.; Kogure, A.; Tanaka, H.; Mori, N.; Masahashi, N.; Aizawa, T. Acceleration of Fracture Healing in Mouse Tibiae Using Intramedullary Nails Composed of Beta-Type TiNbSn Alloy with Low Young’s Modulus. Tohoku J. Exp. Med. 2021, 255, 135–142. [Google Scholar] [CrossRef]
- Ito, K.; Mori, Y.; Kamimura, M.; Koguchi, M.; Kurishima, H.; Koyama, T.; Mori, N.; Masahashi, N.; Hanada, S.; Itoi, E.; et al. Beta-Type TiNbSn Alloy Plates With Low Young Modulus Accelerates Osteosynthesis in Rabbit Tibiae. Clin. Orthop. Relat. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, M.; Mori, Y.; Sugahara-Tobinai, A.; Takai, T.; Itoi, E. Impaired Fracture Healing Caused by Deficiency of the Immunoreceptor Adaptor Protein DAP12. PLoS ONE 2015, 10, e0128210. [Google Scholar] [CrossRef]
- Mori, Y.; Adams, D.; Hagiwara, Y.; Yoshida, R.; Kamimura, M.; Itoi, E.; Rowe, D.W. Identification of a Progenitor Cell Population Destined to Form Fracture Fibrocartilage Callus in Dickkopf-Related Protein 3-Green Fluorescent Protein Reporter Mice. J. Bone Miner. Metab. 2016, 34, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Kim, H.M.; Kawashita, M. Novel Bioactive Materials with Different Mechanical Properties. Biomaterials 2003, 24, 2161–2175. [Google Scholar] [CrossRef]
- Doran, A.; Law, F.C.; Allen, M.J.; Rushton, N. Neoplastic Transformation of Cells by Soluble but Not Particulate Forms of Metals Used in Orthopaedic Implants. Biomaterials 1998, 19, 751–759. [Google Scholar] [CrossRef]
- Radin, S.R.; Ducheyne, P. Plasma Spraying Induced Changes of Calcium-Phosphate Ceramic Characteristics and the Effect on In-Vitro Stability. J. Mater. Sci. Mater. Med. 1992, 3, 33–42. [Google Scholar] [CrossRef]
- Chang, E.; Chang, W.J.; Wang, B.C.; Yang, C.Y. Plasma Spraying of Zirconia-Reinforced Hydroxyapatite Composite Coatings on Titanium. 1. Phase, Microstructure and Bonding Strength. J. Mater. Sci. Mater. Med. 1997, 8, 193–200. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M.Y.; Aucouturier, M. Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surf. Interface Anal. 1999, 27, 629–637. [Google Scholar] [CrossRef]
- Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.C.; Singh, R.S.; Chen, Z.; Dickey, E.C. Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. J. Mater. Res. 2001, 16, 3331–3334. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. Engl. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Houser, J.E.; Hebert, K.R. The Role of Viscous Flow of Oxide in the Growth of Self-Ordered Porous Anodic Alumina Films. Nat. Mater. 2009, 8, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, H.; Lü, W.; Li, J.; Wang, J.; Zhang, Z.; Liu, Y. Effects of TiO2 Nanotubes with Different Diameters on Gene Expression and Osseointegration of Implants in Minipigs. Biomaterials 2011, 32, 6900–6911. [Google Scholar] [CrossRef]
- Salou, L.; Hoornaert, A.; Louarn, G.; Layrolle, P. Enhanced Osseointegration of Titanium Implants with Nanostructured Surfaces: An Experimental Study in Rabbits. Acta Biomater. 2015, 11, 494–502. [Google Scholar] [CrossRef]
- Lv, L.; Liu, Y.; Zhang, P.; Zhang, X.; Liu, J.; Chen, T.; Su, P.; Li, H.; Zhou, Y. The Nanoscale Geometry of TiO2 Nanotubes Influences the Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Modulating H3K4 Trimethylation. Biomaterials 2015, 39, 193–205. [Google Scholar] [CrossRef]
- Chen, C.S. Mechanotransduction—A Field Pulling Together? J. Cell Sci. 2008, 121, 3285–3292. [Google Scholar] [CrossRef] [Green Version]
- Lou, H.Y.; Zhao, W.; Zeng, Y.; Cui, B. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Acc. Chem. Res. 2018, 51, 1046–1053. [Google Scholar] [CrossRef]
- Chen, M.; Hu, Y.; Li, M.; Chen, M.; Shen, X.; Luo, Z.; Mu, C.; Yang, W.; Liu, P.; Cai, K. Regulation of Osteoblast Differentiation by Osteocytes Cultured on Sclerostin Antibody Conjugated TiO2 Nanotube Array. Colloids Surf. B Biointerfaces 2019, 175, 663–670. [Google Scholar] [CrossRef]
- Sul, Y.T.; Johansson, C.B.; Petronis, S.; Krozer, A.; Jeong, Y.; Wennerberg, A.; Albrektsson, T. Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition. Biomaterials 2002, 23, 491–501. [Google Scholar] [CrossRef]
- Sul, Y.T.; Johansson, C.B.; Röser, K.; Albrektsson, T. Qualitative and Quantitative Observations of Bone Tissue Reactions to Anodised Implants. Biomaterials 2002, 23, 1809–1817. [Google Scholar] [CrossRef]
- Li, L.H.; Kong, Y.M.; Kim, H.W.; Kim, Y.W.; Kim, H.E.; Heo, S.J.; Koak, J.Y. Improved Biological Performance of Ti Implants Due to Surface Modification by Micro-arc Oxidation. Biomaterials 2004, 25, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Heo, S.J.; Koak, J.Y.; Kim, S.K.; Lim, Y.J.; Kim, S.H.; Lee, J.B. Biological Responses of Anodized Titanium Implants Under Different Current Voltages. J. Oral Rehabil. 2006, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; McQuillan, A.J.; Sharma, L.A.; Waddell, J.N.; Shibata, Y.; Duncan, W.J. Spark Anodization of Titanium-Zirconium Alloy: Surface Characterization and Bioactivity Assessment. J. Mater. Sci. Mater. Med. 2015, 26, 221. [Google Scholar] [CrossRef] [PubMed]
- Sul, Y.T.; Johansson, C.B.; Jeong, Y.; Röser, K.; Wennerberg, A.; Albrektsson, T. Oxidized Implants and Their Influence on the Bone Response. J. Mater. Sci. Mater. Med. 2001, 12, 1025–1031. [Google Scholar] [CrossRef]
- Das, S.; Zazpe, R.; Prikryl, J.; Knotek, P.; Krbal, M.; Sopha, H.; Podzemna, V.; Macak, J.M. Influence of Annealing Temperatures on the Properties of Low Aspect-Ratio TiO2 Nanotube Layers. Electrochim. Acta 2016, 213, 452–459. [Google Scholar] [CrossRef]
- Krbal, M.; Kucharik, J.; Sopha, H.; Nemec, H.; Macak, J.M. Charge Transport in Anodic TiO2 Nanotubes Studied by Terahertz Spectroscopy. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2016, 10, 691–695. [Google Scholar] [CrossRef]
- Popat, K.C.; Leoni, L.; Grimes, C.A.; Desai, T.A. Influence of Engineered titania Nanotubular Surfaces on Bone Cells. Biomaterials 2007, 28, 3188–3197. [Google Scholar] [CrossRef]
- Peng, L.; Eltgroth, M.L.; LaTempa, T.J.; Grimes, C.A.; Desai, T.A. The Effect of TiO2 Nanotubes on Endothelial Function and Smooth Muscle Proliferation. Biomaterials 2009, 30, 1268–1272. [Google Scholar] [CrossRef]
- Smith, B.S.; Yoriya, S.; Johnson, T.; Popat, K.C. Dermal Fibroblast and Epidermal Keratinocyte Functionality on titania Nanotube Arrays. Acta Biomater. 2011, 7, 2686–2696. [Google Scholar] [CrossRef]
- Masahashi, N.; Mizukoshi, Y.; Semboshi, S.; Ohtsu, N. Enhanced Photocatalytic Activity of Rutile TiO2 Prepared by Anodic Oxidation in a High Concentration Sulfuric Acid Electrolyte. Appl. Catal. B 2009, 90, 255–261. [Google Scholar] [CrossRef]
- Mizukoshi, Y.; Ohtsu, N.; Semboshi, S.; Masahashi, N. Visible Light Responses of Sulfur-Doped Rutile Titanium Dioxide Photocatalysts Fabricated by Anodic Oxidation. Appl. Catal. B 2009, 91, 152–156. [Google Scholar] [CrossRef]
- Kuromoto, N.K.; Simão, R.A.; Soares, G.A. Titanium Oxide Films Produced on Commercially Pure Titanium by Anodic Oxidation with Different Voltages. Mater. Charact. 2007, 58, 114–121. [Google Scholar] [CrossRef]
- Cui, X.; Kim, H.M.; Kawashita, M.; Wang, L.; Xiong, T.; Kokubo, T.; Nakamura, T. Preparation of Bioactive titania Films on Titanium Metal via Anodic Oxidation. Dent. Mater. 2009, 25, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Uchida, M.; Kim, H.M.; Zhang, X.; Kokubo, T. Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment. Biomaterials 2004, 25, 1003–1010. [Google Scholar] [CrossRef]
- Tanaka, H.; Mori, Y.; Noro, A.; Kogure, A.; Kamimura, M.; Yamada, N.; Hanada, S.; Masahashi, N.; Itoi, E. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water. PLoS ONE 2016, 11, e0150081. [Google Scholar] [CrossRef]
- Masahashi, N.; Mori, Y.; Tanaka, H.; Kogure, A.; Inoue, H.; Ohmura, K.; Kodama, Y.; Nishijima, M.; Itoi, E.; Hanada, S. Study of Bioactivity on a TiNbSn Alloy Surface. Thin Solid Films 2017, 639, 22–28. [Google Scholar] [CrossRef]
- Kunii, T.; Mori, Y.; Tanaka, H.; Kogure, A.; Kamimura, M.; Mori, N.; Hanada, S.; Masahashi, N.; Itoi, E. Improved Osseointegration of a TiNbSn Alloy with a Low Young’s Modulus Treated with Anodic Oxidation. Sci. Rep. 2019, 9, 13985. [Google Scholar] [CrossRef] [Green Version]
- Masahashi, N.; Mori, Y.; Tanaka, H.; Kogure, A.; Inoue, H.; Ohmura, K.; Kodama, Y.; Nishijima, M.; Itoi, E.; Hanada, S. Bioactive TiNbSn Alloy Prepared by Anodization in Sulfuric Acid Electrolytes. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 753–763. [Google Scholar] [CrossRef]
- Ishizawa, H.; Fujino, M.; Ogino, M. Mechanical and Histological Investigation of Hydrothermally Treated and Untreated Anodic Titanium-Oxide Films Containing Ca and P. J. Biomed. Mater. Res. 1995, 29, 1459–1468. [Google Scholar] [CrossRef]
- Ishizawa, H.; Ogino, M. Characterization of Thin Hydroxyapatite Layers Formed on Anodic Titanium-Oxide Films Containing Ca and P by Hydrothermal Treatment. J. Biomed. Mater. Res. 1995, 29, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Fini, M.; Cigada, A.; Rondelli, G.; Chiesa, R.; Giardino, R.; Giavaresi, G.; Nicoli Aldini, N.N.; Torricelli, P.; Vicentini, B. In Vitro and In Vivo Behaviour of Ca- and P-Enriched Anodized Titanium. Biomaterials 1999, 20, 1587–1594. [Google Scholar] [CrossRef]
- Oliveira, N.C.M.; Moura, C.C.G.; Zanetta-Barbosa, D.; Mendonça, D.B.S.; Cooper, L.; Mendonça, G.; Dechichi, P. Effects of Titanium Surface Anodization with CaP Incorporation on Human Osteoblastic Response. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1958–1962. [Google Scholar] [CrossRef] [Green Version]
- Szesz, E.M.; de Souza, G.B.; de Lima, G.G.; da Silva, B.A.; Kuromoto, N.K.; Lepienski, C.M. Improved Tribo-Mechanical Behavior of CaP-Containing TiO2 Layers Produced on Titanium by Shot Blasting and Micro-arc Oxidation. J. Mater. Sci. Mater. Med. 2014, 25, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Habazaki, H.; Uozumi, M.; Konno, H.; Shimizu, K.; Skeldon, P.; Thompson, G.E. Crystallization of Anodic titania on Titanium and Its Alloys. Corros. Sci. 2003, 45, 2063–2073. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhong, X.; Walton, J.; Thompson, G.E. Anodic Film Growth of Titanium Oxide Using the 3-Electrode Electrochemical Technique: Effects of Oxygen Evolution and Morphological Characterizations. J. Electrochem. Soc. 2016, 163, E75–E82. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, R.N. Surface Roughness and Contact Angle. J. Phys. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Kurishima, H.; Mori, Y.; Ishii, K.; Inoue, H.; Mokudai, T.; Fujimori, S.; Itoi, E.; Hanada, S.; Masahashi, N.; Aizawa, T. Antibacterial Activity of an Anodized TiNbSn Alloy Prepared in Sodium Tartrate Electrolyte. Front. Bioeng. Biotechnol. 2022, 10, 883335. [Google Scholar] [CrossRef]
- Masahashi, N.; Mori, Y.; Kurishima, H.; Inoue, H.; Mokudai, T.; Semboshi, S.; Hatakeyama, M.; Itoi, E.; Hanada, S. Photoactivity of an Anodized Biocompatible TiNbSn Alloy Prepared in Sodium Tartrate/Hydrogen Peroxide Aqueous Solution. Appl. Surf. Sci. 2021, 543, 148829. [Google Scholar] [CrossRef]
- Hatakeyama, M.; Masahashi, N.; Michiyama, Y.; Inoue, H.; Hanada, S. Mechanical Properties of Anodized TiNbSn Alloy for Biomedical Applications. Mat. Sci. Eng. Struct. 2021, 825, 141898. [Google Scholar] [CrossRef]
- Mori, Y.; Mori, N.; Aizawa, T. Improving Osteoinductive Properties and Imparting Antibacterial Activity to Titanium Alloys. J. Bone Miner. Metab. 2022, 40, 720–721. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Miyamoto, H.; Noda, I.; Sakurai, N.; Akiyama, T.; Yonekura, Y.; Shimazaki, T.; Miyazaki, M.; Mawatari, M.; Hotokebuchi, T. Calcium Phosphate Coating Containing Silver Shows High Antibacterial Activity and Low Cytotoxicity and Inhibits Bacterial Adhesion. Mat. Sci. Eng. C Mater. 2010, 30, 175–180. [Google Scholar] [CrossRef]
- Shirai, T.; Shimizu, T.; Ohtani, K.; Zen, Y.; Takaya, M.; Tsuchiya, H. Antibacterial Iodine-Supported Titanium Implants. Acta Biomater. 2011, 7, 1928–1933. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Yang, Y.; Lu, J.R.; Wang, C.Z.; Xie, Y.T.; Zheng, X.B.; Yao, Z.J.; Zhang, C. Sustained Release Vancomycin-Coated Titanium Alloy Using a Novel Electrostatic Dry Powder Coating Technique May Be a Potential Strategy to Reduce Implant-Related Infection. BioSci. Trends. 2017, 11, 346–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Y.; Dong, H.; Liu, J.; Qin, G.W.; Chen, D.F.; Zhang, E. In Vivo Antibacterial Property of Ti-Cu Sintered Alloy Implant. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 38–47. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Ohko, Y.; Utsumi, Y.; Niwa, C.; Tatsuma, T.; Kobayakawa, K.; Satoh, Y.; Kubota, Y.; Fujishima, A. Self-Sterilizing and Self-Cleaning of Silicone Catheters Coated with TiO2 Photocatalyst Thin Films: A Preclinical Work. J. Biomed. Mater. Res. 2001, 58, 97–101. [Google Scholar] [CrossRef]
- Yao, Y.; Ohko, Y.; Sekiguchi, Y.; Fujishima, A.; Kubota, Y. Self-Sterilization Using Silicone Catheters Coated with Ag and TiO2 Nanocomposite Thin Film. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.X.; Kubota, Y.; Shuin, T.; Sakai, H.; Hashimoto, K.; Fujishima, A. Induction of Cytotoxicity by Photoexcited TiO2 Particles. Cancer Res. 1992, 52, 2346–2348. [Google Scholar]
- Kubota, Y.; Shuin, T.; Kawasaki, C.; Hosaka, M.; Kitamura, H.; Cai, R.; Sakai, H.; Hashimoto, K.; Fujishima, A. Photokilling of T-24 Human Bladder-Cancer Cells with Titanium-Dioxide. Br. J. Cancer. 1994, 70, 1107–1111. [Google Scholar] [CrossRef]
- Maness, P.C.; Smolinski, S.; Blake, D.M.; Huang, Z.; Wolfrum, E.J.; Jacoby, W.A. Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of Its Killing Mechanism. Appl. Environ. Microbiol. 1999, 65, 4094–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, J.W.; Chang, H.H. Bactericidal Effects and Mechanisms of Visible Light-Responsive Titanium Dioxide Photocatalysts on Pathogenic Bacteria. Arch. Immunol. Ther. Exp. 2012, 60, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Ophus, E.M.; Rode, L.; Gylseth, B.; Nicholson, D.G.; Saeed, K. Analysis of Titanium Pigments in Human Lung Tissue. Scand. J. Work Environ. Health 1979, 5, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, E.; Cakiroglu, B.; Gokce, A.; Findik, F.; Gulsoy, H.O.; Gulsoy, N.; Mutlu, O.; Ozacar, M. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.; Gokce, A.; Findik, F.; Gulsoy, H.O. Characterization of biomedical Ti-16Nb-(0-4)Sn alloys produced by Powder Injection Molding. Vacuum 2017, 142, 164–174. [Google Scholar] [CrossRef]
- Yilmaz, E.; Gokce, A.; Findik, F.; Gulsoy, H.O.; Iyibilgin, O. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. J. Mech. Behav. Biomed. Mater. 2018, 87, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Spataru, M.C.; Butnaru, M.; Sandu, A.V.; Vulpe, V.; Vlad, M.D.; Baltatu, M.S.; Geanta, V.; Voiculescu, I.; Vizureanu, P.; Solcan, C. In-depth assessment of new Ti-based biocompatible materials. Mater. Chem. Phys. 2021, 258, 123959. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Florido-Suarez, N.; Saceleanu, M.V.; Mirza-Rosca, J.C. New Titanium Alloys, Promising Materials for Medical Devices. Materials 2021, 14, 5934. [Google Scholar] [CrossRef]
- Sandu, A.V.; Baltatu, M.S.; Nabialek, M.; Savin, A.; Vizureanu, P. Characterization and Mechanical Proprieties of New TiMo Alloys Used for Medical Applications. Materials 2019, 12, 2973. [Google Scholar] [CrossRef] [Green Version]
- Baltatu, I.; Sandu, A.V.; Vlad, M.D.; Spataru, M.C.; Vizureanu, P.; Baltatu, M.S. Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloys. Micromachines 2022, 13, 430. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, Y.; Masahashi, N.; Aizawa, T. A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants. Materials 2022, 15, 5116. https://doi.org/10.3390/ma15155116
Mori Y, Masahashi N, Aizawa T. A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants. Materials. 2022; 15(15):5116. https://doi.org/10.3390/ma15155116
Chicago/Turabian StyleMori, Yu, Naoya Masahashi, and Toshimi Aizawa. 2022. "A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants" Materials 15, no. 15: 5116. https://doi.org/10.3390/ma15155116
APA StyleMori, Y., Masahashi, N., & Aizawa, T. (2022). A Review of Anodized TiNbSn Alloys for Improvement in Layer Quality and Application to Orthopedic Implants. Materials, 15(15), 5116. https://doi.org/10.3390/ma15155116