Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis
Abstract
:1. Introduction
2. Fresh Properties
Slump Flow
3. Mechanical Properties
3.1. Compressive Strength (CPM)
3.2. Flexural Strength (FLS)
3.3. Split Tensile Strength
3.4. Elastic Modulus
4. Durability
4.1. Chloride Penetration (16)
4.2. Water Absorption
4.3. Ultrasonic Pulse Velocity and Rebound Hammer Test
4.4. Creep
4.5. Shrinkage
4.6. Performance of Glass Fiber under NaCl Solution
5. Scanning Electron Microscopy
6. Factors to Be Considered while Using Glass Fibers
7. Application Glass Fibers
8. Conclusions
- Glass fibers have a negative impact on concrete flowability due to their higher surface area, which increases resistance to flow.
- Glass fibers did not show significant improvement in compressive strength. Tensile and flexural capacity, on the other hand, were significantly enhanced. This is a result of the glass fibers’ ability to resist cracking.
- The surface hardness of glass fiber-reinforced concrete is lower than that of steel fiber-reinforced concrete, which is rated as a good layer.
- Glass fibers reduce the permeability of concrete to chloride-ions due to crack prevention.
- Glass fibers increase the performance of concrete in a maritime environment.
- The optimal dosage of fibers is affected by the water to binder ratio, according to preliminary study of SEM observation. The major causes for this are the dramatic increases in pore size and quantity caused by the coupling effect of increased water/binder ratio and fiber content. The impact of the water/binder ratio should be addressed when considering the effect of fibers on the mechanical or microstructural qualities of concrete.
9. Recommendations for Future Study
- The performance of concrete in harsh environments should be thoroughly examined.
- With regard to the creep and dry shrinkage qualities of glass fiber-reinforced concrete, there is no information available.
- It is essential to explore the thermal characteristics of glass-based composites.
- According to some research, glass fibers do not considerably improve the compressive capacity of concrete. As a result, further research using various pozzolanic materials is needed to increase the compressive capacity of glass fiber-reinforced concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabir, B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Ahmad, J.; Martínez-García, R.; De-Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [Google Scholar] [CrossRef]
- B.I.S. 516; Method of Tests for Strength of Concrete. Bureau of Indian Standards: New Delhi, India, 1959.
- Chavan, S.; Rao, P. Utilization of Waste PET Bottle Fibers in Concrete as an Innovation in Building Materials—[A Review Paper]. Int. J. Eng. Res. 2016, 5, 304–307. [Google Scholar]
- Ahmad, J.; Aslam, F.; Martinez-Garcia, R.; El Ouni, M.H.; Khedher, K.M. Performance of sustainable self-compacting fiber reinforced concrete with substitution of marble waste (MW) and coconut fibers (CFs). Sci. Rep. 2021, 11, 23184. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Elsayed, M.; El-Azim, A.A.; Althoey, F.; Tayeh, B.A. Using Ultra-High Performance Fiber Reinforced Concrete in Improvement Shear Strength of Reinforced Concrete Beams. Case Stud. Constr. Mater. 2022, 16, e01009. [Google Scholar] [CrossRef]
- Sekar, A.; Kandasamy, G. Study on Durability Properties of Coconut Shell Concrete with Coconut Fiber. Buildings 2019, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Cosgun, T. An Experimental Study of RC Beams with Varying Concrete Strength Classes Externally Strengthened with CFRP Composites. J. Eng. Fibers Fabr. 2016, 11, 155892501601100300. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Yu, Y.; Na, M. Flexural Properties of Load-Holding Reinforced Concrete Beams Strengthened with Textile-Reinforced Concrete under a Chloride Dry–Wet Cycle. J. Eng. Fibers Fabr. 2019, 14, 1558925019845902. [Google Scholar] [CrossRef]
- Sbia, L.A.; Peyvandi, A.A.; Soroushian, P.; Balachandra, A.M.; Sobolev, K. Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Constr. Build. Mater. 2015, 76, 413–422. [Google Scholar] [CrossRef]
- Benzaid, R.; Mesbah, H.-A. Circular and Square Concrete Columns Externally Confined by CFRP Composite: Experimental Investigation and Effective Strength Models. In Fiber Reinforced Polymers—The Technology Applied for Concrete Repair; IntechOpen Limited: London, UK, 2013; pp. 167–201. [Google Scholar]
- Thanushan, K.; Yogananth, Y.; Sangeeth, P.; Coonghe, J.G.; Sathiparan, N. Strength and Durability Characteristics of Coconut Fibre Reinforced Earth Cement Blocks. J. Nat. Fibers 2021, 18, 773–788. [Google Scholar] [CrossRef]
- Okeola, A.A.; Abuodha, S.O.; Mwero, J. Experimental Investigation of the Physical and Mechanical Properties of Sisal Fiber-Reinforced Concrete. Fibers 2018, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Daniel, J.I. Comitee State of the Art Report of Fiber Reinforced Concrete: ACI-544.1 R-96 (Reapproved 2002); American Concrete Institute: Farmington Hills, MI, USA, 2002. [Google Scholar]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A Green Material from Rock: Basalt Fiber a Review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Deák, T.; Czigány, T. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Górski, M.; Kotala, B.; Białozor, R. Types and Properties of Non-Metallic Reinforcement. In Proceedings of the XXXIII National Workshops of Structural Designers, Szczyrk, Poland, 6–9 March 2018; pp. 6–9. [Google Scholar]
- Zych, T. Contemporary Fibre Reinforced Concrete–Possibility of Forming of Structural Elements and Architectural Forms. Arch. Czas. Tech. 2010, 18, 371–386. [Google Scholar]
- Kumar, K.S.; Baskar, K. Response Surfaces for Fresh and Hardened Properties of Concrete with E-Waste (HIPS). J. Waste Manag. 2014, 2014, 517219. [Google Scholar]
- Khan, R. Industry Survey on Production Availability and Cost of GRP Waste in the UK; Hambleside Danelaw Rooflights Cladding Ltd.: Inverness, Scotland, 2007. [Google Scholar]
- Mohajerani, A.; Vajna, J.; Cheung, T.H.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. Practical Recycling Applications of Crushed Waste Glass in Construction Materials: A Review. Constr. Build. Mater. 2017, 156, 443–467. [Google Scholar] [CrossRef]
- Sharafeddin, F.; Alavi, A.; Talei, Z. Flexural Strength of Glass and Polyethylene Fiber Combined with Three Different Composites. J. Dent. 2013, 14, 13–19. [Google Scholar]
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical Properties and Fracture Behavior of Basalt and Glass Fiber Reinforced Concrete: An Experimental Study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Ahmad, J.; Zaid, O.; Aslam, F.; Shahzaib, M.; Ullah, R.; Alabduljabbar, H.; Khedher, K.M. A Study on the Mechanical Characteristics of Glass and Nylon Fiber Reinforced Peach Shell Lightweight Concrete. Materials 2021, 14, 4488. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Mechanical Property Evaluation of Sisal–Jute–Glass Fiber Reinforced Polyester Composites. Compos. Part B Eng. 2013, 48, 1–9. [Google Scholar] [CrossRef]
- Mayer, P.; Kaczmar, J.W. Properties and Applications of Carbon and Glass Fibers. Tworzywa Sztuczne I Chem. 2008, 6, 52–56. [Google Scholar]
- Mohajerani, A.; Hui, S.-Q.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; Abdul Kadir, A.; Rahman, M.T.; Maghool, F. Amazing Types, Properties, and Applications of Fibres in Construction Materials. Materials 2019, 12, 2513. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-H.; Huang, C.-L.; Liu, C.-F.; Chen, C.-K.; Lin, Z.-I.; Lou, C.-W. Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology. Materials 2015, 8, 8279–8291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palanikumar, K.; Ramesh, M.; Reddy, K.H. Experimental Investigation on the Mechanical Properties of Green Hybrid Sisal and Glass Fiber Reinforced Polymer Composites. J. Nat. Fibers 2016, 13, 321–331. [Google Scholar] [CrossRef]
- Atewi, Y.R.; Hasan, M.F.; Güneyisi, E. Fracture and permeability properties of glass fiber reinforced self-compacting concrete with and without nanosilica. Constr. Build. Mater. 2019, 226, 993–1005. [Google Scholar] [CrossRef]
- Ali, B.; Qureshi, L.A.; Raza, A.; Nawaz, M.A.; Rehman, S.U.; Rashid, M.U. Influence of Glass Fibers on Mechani-cal Properties of Concrete with Recycled Coarse Aggregates. Civ. Eng. J 2019, 5, 1007–1019. [Google Scholar] [CrossRef] [Green Version]
- Madhkhan, M.; Katirai, R. Effect of Pozzolanic Materials on Mechanical Properties and Aging of Glass Fiber Re-inforced Concrete. Constr. Build. Mater. 2019, 225, 146–158. [Google Scholar] [CrossRef]
- Monteiro, P. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Publishing: New York, NY, USA, 2006; ISBN 1281080799. [Google Scholar]
- Thomas, J.; Ramaswamy, A. Mechanical Properties of Steel Fiber-Reinforced Concrete. J. Mater. Civ. Eng. 2007, 19, 385–392. [Google Scholar] [CrossRef]
- Sivakumar, A.; Santhanam, M. Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cem. Concr. Compos. 2007, 29, 603–608. [Google Scholar] [CrossRef]
- Hsu, L.S.; Hsu, C.T. Stress-Strain Behavior of Steel-Fiber High-Strength Concrete under Compression. Struct. J. 1994, 91, 448–457. [Google Scholar]
- Ahmad, J.; Manan, A.; Ali, A.; Khan, M.W.; Asim, M.; Zaid, O. A Study on Mechanical and Durability Aspects of Concrete Modified with Steel Fibers (SFs). Civ. Eng. Arch. 2020, 8, 814–823. [Google Scholar] [CrossRef]
- Mirza, F.A.; Soroushian, P. Effects of Alkali-Resistant Glass Fiber Reinforcement on Crack and Temperature Re-sistance of Lightweight Concrete. Cem. Concr. Compos. 2002, 24, 223–227. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Mader, E.; Yue, C.-Y.; Hu, X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Chandramouli, K.; Srinivasa, R.P.; Pannirselvam, N.; Seshadri, S.T.; Sravana, P. Strength Properties of Glass Fiber Concrete. ARPN J. Eng. Appl. Sci. 2010, 5, 1–6. [Google Scholar]
- Dehghan, A.; Peterson, K.; Shvarzman, A. Recycled Glass Fiber Reinforced Polymer Additions to Portland Cement Concrete. Constr. Build. Mater. 2017, 146, 238–250. [Google Scholar] [CrossRef]
- Hambach, M.; Rutzen, M.; Volkmer, D. Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste. In 3D Concrete Printing Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 73–113. [Google Scholar]
- Tanoli, W.A.; Naseer, A.; Wahab, F. Effect of Steel Fibers on Compressive and Tensile Strength of Concrete. Int. J. Adv. Struct. Geotech. Eng. 2014, 3, 393–397. [Google Scholar]
- Nematollahi, B.; Sanjayan, J.; Chai, J.X.H.; Lu, T.M. Properties of Fresh and Hardened Glass Fiber Reinforced Fly Ash Based Geopolymer Concrete. Key Eng. Mater. 2013, 594–595, 629–633. [Google Scholar] [CrossRef]
- Song, P.; Hwang, S.; Sheu, B. Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 2005, 35, 1546–1550. [Google Scholar] [CrossRef]
- Yew, M.K.; Bin Mahmud, H.; Ang, B.C. Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete. Constr. Build. Mater. 2015, 90, 36–43. [Google Scholar] [CrossRef]
- George, R.M.; Das, B.B.; Goudar, S.K. Durability Studies on Glass Fiber Reinforced Concrete. In Sustainable Construction and Building Materials; Springer: Berlin/Heidelberg, Germany, 2019; pp. 747–756. [Google Scholar]
- Yildizel, S.A.; Tayeh, B.A.; Calis, G. Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and Extreme Vertices Design Techniques. J. Mater. Res. Technol. 2020, 9, 2093–2106. [Google Scholar] [CrossRef]
- Rumbayan, R.; Ticoalu, A. A Study into Flexural, Compressive and Tensile Strength of Coir-Concrete as Sustain-able Building Material. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 258, p. 1011. [Google Scholar]
- Ali, M.; Liu, A.; Sou, H.; Chouw, N. Mechanical and dynamic properties of coconut fibre reinforced concrete. Constr. Build. Mater. 2012, 30, 814–825. [Google Scholar] [CrossRef]
- Piérard, J.; Dooms, B.; Cauberg, N. Durability Evaluation of Different Types of UHPC. In Proceedings of the RILEM-fib-AFGC International Symposium on Ultra-High Performance Fiber-Reinforced Concrete, Marseille, France, 1–3 October 2013; pp. 275–284. [Google Scholar]
- Zhang, P.; Li, Q.; Chen, Y.; Shi, Y.; Ling, Y. Durability of Steel Fiber-Reinforced Concrete Containing SiO2 Nano-Particles. Materials 2019, 12, 2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignesh, P.; Krishnaraja, A.R.; Nandhini, N. Study on Mechanical Properties of Geo Polymer Concrete Using M-Sand and Glass Fibers. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 110. [Google Scholar]
- Fenu, L.; Forni, D.; Cadoni, E. Dynamic behaviour of cement mortars reinforced with glass and basalt fibres. Compos. Part B Eng. 2016, 92, 142–150. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers. J. Clean. Prod. 2016, 124, 312–324. [Google Scholar] [CrossRef]
- Deshmukh, S.H.; Bhusari, J.P.; Zende, A.M. Effect of Glass Fibers on Ordinary Portland Cement Concrete. IOSR J. Eng. 2012, 2, 1308–1312. [Google Scholar]
- Ding, H.; Sun, Q.; Wang, Y.; Jia, D.; Li, C.; Ji, C.; Feng, Y. Flexural Behavior of Polyurethane Concrete Reinforced by Carbon Fiber Grid. Materials 2021, 14, 5421. [Google Scholar] [CrossRef]
- Pietrzak, A. The Effect of Polymer Waste Addition on the Quality of Concrete Composite. In Proceedings of the Conference Quality Production Improvement. CQPI 2021, 3, 326–338. [Google Scholar]
- Natarajan, P.; Thulasingam, C. The Effect of Glass and Polyethylene Fiber Reinforcement on Flexural Strength of Provisional Restorative Resins: An In Vitro Study. J. Indian Prosthodont. Soc. 2012, 13, 421–427. [Google Scholar] [CrossRef]
- Zaid, O.; Ahmad, J.; Siddique, M.S.; Aslam, F.; Alabduljabbar, H.; Khedher, K.M. A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Sci. Rep. 2021, 11, 12822. [Google Scholar] [CrossRef] [PubMed]
- Hanif, I.M.; Syuhaili, M.R.N.; Hasmori, M.F.; Shahmi, S.M. Effect of Nylon Fiber on Mechanical Properties of Cement Based Mortar. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 271, p. 12080. [Google Scholar]
- Pereira, C.L.; Demarco, F.F.; Cenci, M.S.; Osinaga, P.W.R.; Piovesan, E.M. Flexural Strength of Composites: Influences of Polyethylene Fiber Reinforcement and Type of Composite. Clin. Oral Investig. 2003, 7, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.; Jallo, E.K. Mechanical Properties of Glass Fiber Reinforced Concrete (English). Al Rafidain Eng. J. 2012, 20, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Parashar, A.K.; Gupta, A. Investigation of the effect of bagasse ash, hooked steel fibers and glass fibers on the mechanical properties of concrete. Mater. Today: Proc. 2020, 44, 801–807. [Google Scholar] [CrossRef]
- Abousnina, R.; Premasiri, S.; Anise, V.; Lokuge, W.; Vimonsatit, V.; Ferdous, W.; Alajarmeh, O. Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete. Polymers 2021, 13, 4112. [Google Scholar] [CrossRef]
- Feng, J.; Sun, W.; Zhai, H.; Wang, L.; Dong, H.; Wu, Q. Experimental Study on Hybrid Effect Evaluation of Fiber Reinforced Concrete Subjected to Drop Weight Impacts. Materials 2018, 11, 2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovic, I. High-Performance Hybrid-Fibre Concrete. Ph.D. Thesis, Delft University Press, Delft, The Netherlands, January 2006. [Google Scholar]
- Sidodikromo, E.P.; Chen, Z.; Habib, M. Review of The Cement-Based Composite Ultra-High-Performance Concrete (UHPC). Open Civ. Eng. J. 2019, 13, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, V.; Kavitha, O.; Arulraj, G.P.; Srisanthi, V. An experimental study on combined effects of glass fiber and Metakaolin on the rheological, mechanical, and durability properties of selfcompacting concrete. Appl. Clay Sci. 2017, 147, 123–127. [Google Scholar] [CrossRef]
- Yuan, Z.; Jia, Y. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2020, 266, 121048. [Google Scholar] [CrossRef]
- Asokan, P.; Osmani, M.; Price, A. Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete. Constr. Build. Mater. 2010, 24, 448–460. [Google Scholar] [CrossRef]
- Ajay, L.; Kumar, M.A. Experimental Study on Mechanical Properties of Concrete Strengthened with Alkali Resistant Glass Fibers. Test Eng. Manag. 2020, 83, 16295–16298. [Google Scholar]
- Ali, B.; Qureshi, L.A.; Khan, S.U. Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Constr. Build. Mater. 2020, 262, 120820. [Google Scholar] [CrossRef]
- Iskender, M.; Karasu, B. Glass Fibre Reinforced Concrete (GFRC). El-Cezerî J. Sci. Eng. 2018, 5, 136–162. [Google Scholar] [CrossRef] [Green Version]
- Sanjeev, J.; Nitesh, K.J.N.S. Study on the Effect of Steel and Glass Fibers on Fresh and Hardened Properties of Vibrated Concrete and Self-Compacting Concrete. Mater. Today Proc. 2020, 27, 1559–1568. [Google Scholar] [CrossRef]
- Basheerudeen, A.; Anandan, S. Simplified Mix Design Procedures for Steel Fibre Reinforced Self Compacting Concrete. Eng. J. 2015, 19, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Beigi, M.H.; Berenjian, J.; Omran, O.L.; Nik, A.S.; Nikbin, I.M. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 2013, 50, 1019–1029. [Google Scholar] [CrossRef]
- ASTM C1202-22; A.C. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Penetration. Annual Book of ASTM Standards. American Society of Testing and Materials: West Conshohocken, OA, USA, 2009.
- SrinivasaRao, D.P.; Chandra Mouli, K.; SeshadriSekhar, D.T. Durability Studies on Glassfiber Reinforced Concrete. J. Civ. Eng. Sci. An Int. J. 2012, 1, 37–42. [Google Scholar]
- Huang, G.; Xie, X. Experimental Study on the Effect of Nano-SiO 2 to Durability in Hydraulic Concrete. Yellow River 2011, 33, 138–140. [Google Scholar]
- Sathiparan, N.; Rupasinghe, M.N.; Pavithra, B.H. Performance of coconut coir reinforced hydraulic cement mortar for surface plastering application. Constr. Build. Mater. 2017, 142, 23–30. [Google Scholar] [CrossRef]
- Sá, M.F.; Gomes, A.M.; Correia, J.R.; Silvestre, N. Creep behavior of pultruded GFRP elements—Part 1: Literature review and experimental study. Compos. Struct. 2011, 93, 2450–2459. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A.; Almusallam, T. Creep effect on the behavior of concrete beams reinforced with GFRP bars subjected to different environments. Constr. Build. Mater. 2007, 21, 1510–1519. [Google Scholar] [CrossRef]
- Ascione, L.; Berardi, V.P.; D’Aponte, A. Creep phenomena in FRP materials. Mech. Res. Commun. 2012, 43, 15–21. [Google Scholar] [CrossRef]
- Gonilha, J.A.; Barros, J.; Correia, J.R.; Sena-Cruz, J.; Branco, F.A.; Ramos, L.F.; Gonçalves, D.; Alvim, M.R.; Santos, T. Static, dynamic and creep behaviour of a full-scale GFRP-SFRSCC hybrid footbridge. Compos. Struct. 2014, 118, 496–509. [Google Scholar] [CrossRef] [Green Version]
- Saradar, A.; Tahmouresi, B.; Mohseni, E.; Shadmani, A. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete. Fibers 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, E.; Caggiano, A.; Xargay, H. An Experimental Study on the Post-Cracking Behaviour of Hybrid Industrial/Recycled Steel Fibre-Reinforced Concrete. Constr. Build. Mater. 2015, 94, 290–298. [Google Scholar] [CrossRef]
- Gesoglu, M.; Özturan, T.; Güneyisi, E. Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes. Cem. Concr. Compos. 2006, 28, 598–605. [Google Scholar] [CrossRef]
- Messan, A.; Ienny, P.; Nectoux, D. Free and restrained early-age shrinkage of mortar: Influence of glass fiber, cellulose ether and EVA (ethylene-vinyl acetate). Cem. Concr. Compos. 2011, 33, 402–410. [Google Scholar] [CrossRef]
- Schwartzentruber, A.; Philippe, M.; Marchese, G. Effect of PVA, glass and metallic fibers, and of an expansive admixture on the cracking tendency of ultrahigh strength mortar. Cem. Concr. Compos. 2004, 26, 573–580. [Google Scholar] [CrossRef]
- Malathy, R.; Subramanian, K.; Rameshkumar, M. Effect of Glass Fibers on Restrained Plastic Shrinkage Cracking of HPC with Silica Fume. J. Sci. Ind. Res. 2007, 66, 748–751. [Google Scholar]
- Okochi, H.; Kameda, H.; Hasegawa, S.-I.; Saito, N.; Kubota, K.; Igawa, M. Deterioration of concrete structures by acid deposition—An assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens. Atmos. Environ. 2000, 34, 2937–2945. [Google Scholar] [CrossRef]
- Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. Effect of Different Types of Fibers on the Microstructure and the Mechanical Behavior of Ultra-High Performance Fiber-Reinforced Concretes. Compos. Part B Eng. 2016, 86, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jia, Y.; Wang, J. Experimental Study on Mechanical and Durability Properties of Glass and Polypropylene Fiber Reinforced Concrete. Fibers Polym. 2019, 20, 1900–1908. [Google Scholar] [CrossRef]
- Chen, H.; Wang, P.; Pan, J.; Lawi, A.S.; Zhu, Y. Effect of Alkali-Resistant Glass Fiber and Silica Fume on Mechanical and Shrinkage Properties of Cement-Based Mortars. Constr. Build. Mater. 2021, 307, 125054. [Google Scholar] [CrossRef]
- Mohammed, B.H.; Sherwani, A.F.H.; Faraj, R.H.; Qadir, H.H.; Younis, K.H. Mechanical properties and ductility behavior of ultra-high performance fiber reinforced concretes: Effect of low water-to-binder ratios and micro glass fibers. Ain Shams Eng. J. 2021, 12, 1557–1567. [Google Scholar] [CrossRef]
- Lloyd, S. Steel Fibers in Concrete Floor Slabs. Concr. Int. 2014, 36, 47–49. [Google Scholar]
- Pelisser, F.; Montedo, O.R.K.; Gleize, P.J.P.; Roman, H.R. Mechanical Properties of Recycled PET Fibers in Concrete. Mater. Res. 2012, 15, 679–686. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Suresh, S.; Kumar, V.S.S. Experimental Determination of the Mechanical Behavior of Glass Fiber Reinforced Polypropylene Composites. Procedia Eng. 2014, 97, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A Short Review on Basalt Fiber Reinforced Polymer Composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Laura, D.; Keskkula, H.; Barlow, J.; Paul, D. Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer 2002, 43, 4673–4687. [Google Scholar] [CrossRef]
- Blazy, J.; Blazy, R.; Drobiec, Ł. Glass Fiber Reinforced Concrete as a Durable and Enhanced Material for Structural and Architectural Elements in Smart City—A Review. Materials 2022, 15, 2754. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Constr. Build. Mater. 2016, 125, 800–808. [Google Scholar] [CrossRef]
- Liang, W.; Cheng, J.; Hu, Y.; Luo, H. Improved properties of GRC composites using commercial E-glass fibers with new coatings. Mater. Res. Bull. 2002, 37, 641–646. [Google Scholar] [CrossRef]
- Viegas, J. Production Control of GFRC Structural Components in Portugal. In Proceedings of the 12th International Congress of the Internation Glassfibre Reinforced Concrete Association, Dublin, Ireland, 14–16 May 2001; pp. 33–40. [Google Scholar]
- Ferreira, J. Structural Characterization of Glass-Fiber-Reinforced Concrete (GRC). Application to Telecommunications Towers. Ph.D. Thesis, Instituto Superior Técnico, Lisbon, Portugal, 2002. [Google Scholar]
Reference | Glass Fibers | Slump (mm) | Compression Strength (MPa) | Split Tensile Strength (Mpa) | Flexure Strength (Mpa) |
---|---|---|---|---|---|
[32] | For NCA | - | |||
0% | 38.94 | 3.14 | 3.58 | ||
0.25% | 42.71 | 3.57 | 4.59 | ||
0.50% | 42.26 | 3.71 | 4.47 | ||
0.75% | 41.46 | 3.65 | 4.39 | ||
For RCA | |||||
0% | 34.26 | 2.79 | 3.29 | ||
0.25% | 36.24 | 3.29 | 4.42 | ||
0.50% | 37.32 | 3.42 | 4.34 | ||
0.75% | 35.98 | 3.35 | 4.21 | ||
[65] | GF BA | - | 7 days 28 days | 28 days | 28 days |
0% 10% | 32.00 47.50 | 3.19 | 6.55 | ||
0.50% 10 % | 36.60 52.00 | 3.35 | 6.83 | ||
1.00% 10% | 36.65 53.12 | 3.43 | 6.93 | ||
1.50% 10% | 37.23 54.29 | 3.51 | 7.05 | ||
2.00% 10% | 36.70 53.70 | 3.4 | 6.98 | ||
[71] | - | 7 days 28 days | 28 days | 28 days | |
0% | 28.6 28.6 | 5.46 | 7.18 | ||
0.45% | 32.5 25.5 | 4.75 | 7.69 | ||
0.90% | 32.0 42.2 | 6.26 | 9.2 | ||
1.35% | 34.3 43.9 | 7 | 10.01 | ||
[56] | 0% | - | 40 | - | - |
0.25% | 52.21 | 4.88 | |||
0.75% | 55.83 | 5.36 | |||
1.25% | 59.17 | 5.98 | |||
[24] | 0% | 18 | 63 | 3 | 5 |
0.25% | 12 | 62 | 3.5 | 6.5 | |
0.50% | 8 | 62 | 3.7 | 6.5 | |
0.75% | 11 | 67 | 3.8 | 6 | |
1.00% | 8 | 64 | 3.4 | 6.3 | |
[72] | - | WC OC | WC OC | - | |
0% | 61.45 54.8 | 3.85 3.23 | |||
5% | 70.25 66.17 | 4.18 3.44 | |||
15% | 65.21 59.77 | 4.22 4.19 | |||
[73] | - | 14 days 28 days | 14 days 28 days | 14 days 28 days | |
0% | 31.36 39.85 | 2.13 2.83 | 2.94 3.02 | ||
0.50% | 26.88 34.07 | 2.59 2.68 | 2.89 3.76 | ||
1.00% | 36.88 41.63 | 2.60 3.48 | 5.42 6.63 | ||
1.50% | 30.37 36.00 | 2.78 2.82 | 6.35 6.48 | ||
[49] | 7 days 28 days | - | 7 days 28 days | ||
2.00% | 162 | 35 45 | 8.0 12.0 | ||
2.50% | 157 | 36 46 | 8.5 12.5 | ||
3.00% | 152 | 37 47 | 8.7 12.7 | ||
3.50% | 149 | 36 46 | 8.0 13.0 | ||
GF SF | - | - | |||
100% 0% | 181.84 179.29 | 288.80 272.52 | |||
90% 10% | 168.82 173.96 | 269.32 258.58 | |||
[30] | 80% 20% | 171.25 185.25 | 212.32 232.65 | ||
70% 30% | 158.69 135.23 | 234.12 217.38 | |||
60% 40% | 142.32 138.28 | 208.45 205.15 | |||
[70] | 0% | - | 72 | 5.7 | 5.9 |
0.10% | 70 | 5.8 | 6.1 | ||
0.20% | 69 | 6.1 | 6.1 | ||
0.30% | 68 | 6.1 | 6.3 | ||
0.40% | 67 | 6.2 | 6.4 | ||
0.50% | 66 | 6.2 | 6.6 | ||
0.60% | 65 | 6.5 | 6.6 | ||
0.70% | 52 | 6.5 | 6.7 | ||
0.80% | 48 | 6.5 | 6.7 | ||
[74] | 0% | - | 34 | 3.6 | |
0.25% | 35 | 4.2 | |||
0.50% | 37 | 4.9 | |||
1.00% | 35 | 4.8 | |||
[31] | 28 days 90 days | 28 days 90 days | 28 days | ||
0% | 72.0 86 | 3.10 3.60 | 5.7 | ||
0.25% | 71.0 86 | 3.15 3.60 | - | ||
0.50% | 70.5 87 | 3.20 3.70 | 5.7 | ||
0.75% | 70.5 88 | 3.40 3.90 | 5.6 | ||
1.00% | 73.5 92 | 3.60 4.10 | 5.7 | ||
1.25% | 74.0 93 | 3.80 4.20 | - | ||
1.50% | 74.5 95 | 3.90 4.25 | 6.5 | ||
[75] | - | - | - | 28 days 56 days | |
0% | 6.8 7.5 | ||||
5% | 8.0 9.0 | ||||
6% | 8.5 9.0 | ||||
7% | 8.0 9.0 | ||||
[76] | VC SC | VC SC | VC SC | ||
0% | 55 | 47.77 54.44 | 3.60 3.85 | 4.36 4.74 | |
0.02% | 48 | 50.19 57.55 | 3.78 4.13 | 4.56 5.05 | |
0.03% | 45 | 53.66 61.33 | 3.92 4.24 | 4.66 5.17 | |
0.04% | 42 | 57.33 65.55 | 4.10 4.39 | 5.13 5.61 | |
[45] | 0% | 205 | 64.4 | - | 6.8 |
0.50% | 185 | 66 | 7.6 | ||
0.75% | 170 | 60 | 8 | ||
1.00% | 155 | 54 | 7.4 | ||
1.25% | 140 | 70 | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; González-Lezcano, R.A.; Majdi, A.; Ben Kahla, N.; Deifalla, A.F.; El-Shorbagy, M.A. Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Materials 2022, 15, 5111. https://doi.org/10.3390/ma15155111
Ahmad J, González-Lezcano RA, Majdi A, Ben Kahla N, Deifalla AF, El-Shorbagy MA. Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Materials. 2022; 15(15):5111. https://doi.org/10.3390/ma15155111
Chicago/Turabian StyleAhmad, Jawad, Roberto Alonso González-Lezcano, Ali Majdi, Nabil Ben Kahla, Ahmed Farouk Deifalla, and Mohammed A. El-Shorbagy. 2022. "Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis" Materials 15, no. 15: 5111. https://doi.org/10.3390/ma15155111
APA StyleAhmad, J., González-Lezcano, R. A., Majdi, A., Ben Kahla, N., Deifalla, A. F., & El-Shorbagy, M. A. (2022). Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Materials, 15(15), 5111. https://doi.org/10.3390/ma15155111