A Novel Preparation of Special-Shaped Phosphors-in-Glass by Gel Casting with Isobam for High-Power WLEDs Lighting
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sintering Process of Green Bodies
3.2. Physical Properties of PiGs
3.2.1. Rheology Behavior
3.2.2. Shrinkage Ratio and Density
3.3. Microscopic Characteristics of PiGs
3.4. Optical Performances of PiGs
3.5. Heat Dissipation Performances of PiGs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaopu, Y.; Wenqing, F.; Jiancheng, T.; Fan, Y.; Yanfeng, L.; Chun, L. Change of blue light hazard and circadian effect of LED backlight displayer with color temperature and age. Opt. Express 2018, 26, 27021–27032. [Google Scholar] [CrossRef] [PubMed]
- Schubert, E.F.; Kim, J.K.; Luo, H.; Xi, J.Q. Solid-state lighting—A benevolent technology. Rep. Prog. Phys. 2006, 69, 3069–3099. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Crawford, M.H.; Coltrin, M.E.; Fischer, A.J.; Koleske, D.D.; Subramania, G.S.; Wang, G.T.; Wierer, J.J.; Karlicek, R.F. Toward Smart and Ultra-efficient Solid-State Lighting. Adv. Opt. Mater. 2014, 2, 809–836. [Google Scholar] [CrossRef]
- An, J.M.; Zhao, X.; Li, D.S.; Zhang, Y.J.; Fei, F.; Pun, E.Y.B.; Lin, H. New insights into phosphorescence properties of LuAGG: Long afterglow phosphor-in-glass for optical data storage. Ceram. Int. 2021, 47, 3185–3194. [Google Scholar] [CrossRef]
- Weng, Z.; Yi, X.; Tang, Y.; Tian, Y.; Chen, J.; Zhao, D.; Zhou, S.; Lin, Y. Color tunable white LEDs based on low sintering temperature Phosphor−in−Glass. Opt. Mater. 2021, 115, 111043. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Xu, F.; Wang, L.; Xu, L.; Zhu, Q.; Liang, X.; Xiang, W. High-efficiency phosphor-in-glass with ultra-high color rendering indexing for white laser diode lighting. Ceram. Int. 2022, 48, 1682–1689. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Wang, J.; Du, B.; Santamaría, A.A.; Hu, B.; Liu, B.; Ji, H.; Dam-Hansen, C.; Jensen, O.B. Industry-friendly synthesis and high saturation threshold of a LuAG:Ce/glass composite film realizing high-brightness laser lighting. J. Eur. Ceram. Soc. 2020, 40, 6031–6036. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Zhang, Y.; Zhao, Y.; Liang, X.; Chen, G.; Liu, Y.; Xiang, W. Designed glass frames full color in white light-emitting diodes and laser diodes lighting. Chem. Eng. J. 2021, 414, 128754. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, L.; Guo, Y.; Hou, J.; Liu, Y.; Zhou, Y.; Li, J.-G.; Fang, Y. Chromaticity-tunable remote LuYAG: Ce phosphor-in-glass film on regular textured glass substrate for white light emitting diodes. J. Eur. Ceram. Soc. 2021, 41, 752–758. [Google Scholar] [CrossRef]
- Milewska, K.; Maciejewski, M.; Synak, A.; Lapinski, M.; Mielewczyk-Gryn, A.; Sadowski, W.; Koscielska, B. From Structure to Luminescent Properties of B2O3-Bi2O3-SrF2 Glass and Glass-Ceramics Doped with Eu3+ Ions. Materials 2021, 14, 4490. [Google Scholar] [CrossRef]
- Iqbal, F.; Kim, S.; Kim, H. Degradation of phosphor-in-glass encapsulants with various phosphor types for high power LEDs. Opt. Mater. 2017, 72, 323–329. [Google Scholar] [CrossRef]
- Luo, X.; Fu, X.; Chen, F.; Zheng, H. Phosphor self-heating in phosphor converted light emitting diode packaging. Int. J. Heat Mass Transf. 2013, 58, 276–281. [Google Scholar] [CrossRef]
- Xu, J.; Hassan, D.A.; Zeng, R.-J.; Peng, D.-L. Lu3Al5O12:Ce@SiO2 phosphor-in-glass: Its facile synthesis, reduced thermal/chemical degradation and application in high-power white LEDs. J. Eur. Ceram. Soc. 2016, 36, 2017–2025. [Google Scholar] [CrossRef]
- Li, W.; Ma, N.; Devakumar, B.; Huang, X. Blue-light-excitable broadband yellow-emitting CaGd2HfSc(AlO4)3:Ce3+ garnet phosphors for white light-emitting diode devices with improved color rendering index. Mater. Today Chem. 2022, 23, 100638. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Jin, Y. Photoluminescence properties of Ce3+/Mn2+ doped calcium zirconium silicate phosphors with energy transfer for white LEDs. Ceram. Int. 2016, 42, 16626–16632. [Google Scholar] [CrossRef]
- Chen, L.; Lei, F.; Chen, H.; Yin, L.; Zhou, D.; Shi, Y.; Ma, T. A novel borosilicate glass based PiGs for WLEDs with tunable interface defects and high anti-thermal quenching power. Opt. Mater. 2020, 109, 110283. [Google Scholar] [CrossRef]
- Park, H.-A.; Lee, Y.K.; Im, W.B.; Heo, J.; Chung, W.J. Phosphor in glass with Eu3+ and Pr3+-doped silicate glasses for LED color conversion. Opt. Mater. 2015, 41, 67–70. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, J.S.; Heo, J.; Im, W.B.; Chung, W.J. Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications. Opt. Lett. 2012, 37, 3276–3278. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, Y.H.; Heo, J.; Im, W.B.; Chung, W.J. Control of chromaticity by phosphor in glasses with low temperature sintered silicate glasses for LED applications. Opt. Lett. 2014, 39, 4084–4087. [Google Scholar] [CrossRef]
- Li, Y.; Hu, L.; Yang, B.; Shi, M.; Zou, J. Effect of sintering temperature on the photoluminescence properties of red-emitting color conversion glass. J. Mater. Sci. Mater. Electron. 2017, 29, 2035–2039. [Google Scholar] [CrossRef]
- Allen, S.C.; Steckl, A.J. A nearly ideal phosphor-converted white light-emitting diode. Appl. Phys. Lett. 2008, 92, 128. [Google Scholar] [CrossRef]
- Luo, X.; Hu, R.; Liu, S.; Wang, K. Heat and fluid flow in high-power LED packaging and applications. Prog. Energy Combust. Sci. 2016, 56, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, S.; Karunakar, D.B.; Jha, P.K. Developments in investment casting process—A review. J. Mater. Process. Technol. 2012, 212, 2332–2348. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, L.; Chen, H.; Gao, P.; Shao, C.; Xi, X.; Lin, L.; Li, H.; Chen, Y.; Chen, L. A novel gelcasting induction method for YAG transparent ceramic. Ceram. Int. 2021, 47, 4327–4332. [Google Scholar] [CrossRef]
- Siddika, A.; Hajimohammadi, A.; Sahajwalla, V. Powder sintering and gel casting methods in making glass foam using waste glass: A review on parameters, performance, and challenges. Ceram. Int. 2022, 48, 1494–1511. [Google Scholar] [CrossRef]
- Montgomery, J.K.; Drzal, P.L.; Shull, K.R.; Faber, K.T. Thermoreversible Gelcasting: A Novel Ceramic Processing Technique. J. Am. Ceram. Soc. 2004, 85, 1164–1168. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Chen, Y.; Wang, R.; Ping, Z. Lattice-structured SiC ceramics obtained via 3D printing, gel casting, and gaseous silicon infiltration sintering. Ceram. Int. 2022, 48, 6488–6496. [Google Scholar] [CrossRef]
- Lu, Y.; Gan, K.; Xu, J.; Lv, L.; Huo, W.; Liu, J.; Zhang, X.; Yang, J. Dispersion and gelation properties of alumina systems with Isobam assisted by dicarboxylic acids. Ceram. Int. 2019, 45, 11939–11945. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, L.; Jiang, Z.; Huang, G.; Zhou, T.; Ben, Y.; Wei, S.; Sun, R.; Chen, H.; Wang, Y. Isobam assisted slurry optimization and gelcasting of transparent YAG ceramics. Ceram. Int. 2018, 44, 1699–1704. [Google Scholar] [CrossRef]
- Ding, N.; Zhi, Y.-R.; Tian, P.-P.; Jiang, H.; Lei, W.; Fan, G.-F.; Wang, X.-H.; Lu, W.-Z. Investigation of gelation mechanism and the effects of APS on AlN slurries with Isobam. Ceram. Int. 2021, 47, 19760–19765. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, Q.; Yuan, Z.; Jiang, Z.; Gu, L.; Sun, B.; Shao, C.; Zhou, T.; Bu, W.; Wang, Y.; et al. Ammonium citrate assisted surface modification and gel casting of YAG transparent ceramics. Ceram. Int. 2018, 44, 21921–21927. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhang, B.; Tian, Z.; Ye, J.; Zhang, H.; Gao, Y.; Liu, Q.; Zhang, Z.; Ye, F. Highly porous LAS-SiC ceramic with near-zero thermal expansion prepared via aqueous gel-casting combined with adding pore-forming agents. Mater. Charact. 2022, 187, 111829. [Google Scholar] [CrossRef]
Sample | Solid Content (wt.%) | Glass Powders (g) | Phosphors (g) | Isobam (g) | APS (g) |
---|---|---|---|---|---|
Sample1 | 72 | 40 | 10 | 1.5 | 0.5 |
Sample2 | 74 | 40 | 10 | 1.5 | 0.5 |
Sample3 | 76 | 40 | 10 | 1.5 | 0.5 |
Sample4 | 78 | 40 | 10 | 1.5 | 0.5 |
Sample5 | 76 | 35 | 15 | 1.5 | 0.5 |
Sample6 | 76 | 30 | 20 | 1.5 | 0.5 |
Sample7 | 76 | 25 | 25 | 1.5 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Tian, J.; Sun, H.; Xu, Q.; Yu, J.; Yao, Q. A Novel Preparation of Special-Shaped Phosphors-in-Glass by Gel Casting with Isobam for High-Power WLEDs Lighting. Materials 2022, 15, 4667. https://doi.org/10.3390/ma15134667
Liu H, Tian J, Sun H, Xu Q, Yu J, Yao Q. A Novel Preparation of Special-Shaped Phosphors-in-Glass by Gel Casting with Isobam for High-Power WLEDs Lighting. Materials. 2022; 15(13):4667. https://doi.org/10.3390/ma15134667
Chicago/Turabian StyleLiu, Hongmei, Junjie Tian, Honghao Sun, Qian Xu, Jinyan Yu, and Qing Yao. 2022. "A Novel Preparation of Special-Shaped Phosphors-in-Glass by Gel Casting with Isobam for High-Power WLEDs Lighting" Materials 15, no. 13: 4667. https://doi.org/10.3390/ma15134667