Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches
Abstract
:1. Introduction
2. Research Methodology
2.1. Experimental Database
2.2. Overview of ANN
2.3. Overview of GEP
2.4. AI Modelling
3. Results and Discussions
3.1. Comparison between Predicted and Experimental Results
3.2. Formulation of Mr
3.3. Importance of Input Variables
3.4. Parametric Study
3.5. Performance Evaluation of the Models
3.5.1. ANN Model
3.5.2. GEP Model
3.6. Comparison of the Models
3.7. Comparison of the Models
4. Concluding Remarks
- The Pearson’s linear correlation obtained for the experimental data showed that WDC showed a negative correlation, and CSAFR and DMR depicted a strong positive correlation with the resilient modulus (Mr). The σ3 and σ4 showed slight positive correlations. The results from the parametric and sensitivity analyses also reflected similar interpretations of these variables. The results were corroborated by the previous literature. Thus, the results of the Pearson’s correlation, the sensitivity, and the parametric analyses and the literature are in good agreement with each other, rendering the developed models reliable for future use.
- The ANN model yielded the slopes of the regression line as 0.96, 0.99, and 0.94 for the training, validation, and testing data, respectively, in comparison with 0.72, 0.72, and 0.76, respectively, in the case of the GEP model. Values for R, MAE, and RMSE of 0.983, 245, and 60.52, respectively, were reported for ANN, whereas the GEP model manifested 0.86, 764 kPa, and 60.6 kPa, respectively, for the training data. The ANN model exceeded in accuracy in comparison with the GEP model.
- The sensitivity analysis revealed that DMR was the most influential parameter in contributing to Mr in both the models. Additionally, the CSAFR and WDC were reported as the next most important variables in the ANN modelling, whereas the WDC and CSAFR governed in the case of the GEP model. The σ3 and σ4 exhibited the least importance in estimating the Mr value. The parametric analysis of both the models showed that the Mr increased with DMR, σ3, and σ4. An increase in the number of the WDCs reduced the Mr value.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
ANFIS | adaptive neuro-fuzzy inference system |
ANN | artificial neural network |
BBO | biogeography-based optimization |
CSAFR | calcium oxide to (silica, alumina, and ferric oxide compounds) ratio |
DMR | density to moisture content ratio |
ELM | extreme learning machine |
EO | equilibrium optimizer |
ETs | expression trees |
FTCs | freeze–thaw cycles |
GA | genetic algorithm |
GEP | gene expression programming |
GP | gene programming |
IIF | importance of input variables in percentage |
MAE | mean absolute error |
MEPDG | mechanistic empirical pavement design guidelines |
PSO | particle swarm optimization |
R | correlation coefficient |
r | Pearson correlation coefficient |
RF | random forest |
RMSE | root mean squared error |
RSE | root squared error |
WDCs | wet–dry cycles |
Mr | resilient modulus |
σ3 | confining stress |
σ4 | deviator stress |
References
- Maalouf, M.; Khoury, N.; Laguros, J.G.; Kumin, H. Support vector regression to predict the performance of stabilized aggregate bases subject to wet–dry cycles. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 675–696. [Google Scholar] [CrossRef]
- Beja, I.A.; Motta, R.; Bernucci, L.B. Application of recycled aggregates from construction and demolition waste with portland cement and hydrated lime as pavement subbase in brazil. Constr. Build. Mater. 2020, 258, 119520. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Gabr, A.R.; Hu, J.W.; Jin, X.; Roy, B. Particle swarm optimization algorithm-extreme learning machine (pso-elm) model for predicting resilient modulus of stabilized aggregate bases. Appl. Sci. 2019, 9, 3221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Hao, P.; Men, G.; Liu, N.; Yuan, G. Research on the compatibility of waterproof layer materials and asphalt mixture for steel bridge deck. Constr. Build. Mater. 2021, 269, 121346. [Google Scholar] [CrossRef]
- Khoury, N.; Zaman, M.M. Durability of stabilized base courses subjected to wet–dry cycles. Int. J. Pavement Eng. 2007, 8, 265–276. [Google Scholar] [CrossRef]
- Wayne, M.; Boudreau, R.L.; Kwon, J. Characterization of mechanically stabilized layer by resilient modulus and permanent deformation testing. Transp. Res. Rec. 2011, 2204, 76–82. [Google Scholar] [CrossRef]
- Magalhães, M.T. Spatial coverage index for assessing national and regional transportation infrastructures. J. Transp. Geogr. 2016, 56, 53–61. [Google Scholar] [CrossRef]
- Nian, T.; Ge, J.; Li, P.; Wang, M.; Mao, Y. Improved discrete element numerical simulation and experiment on low-temperature anti-cracking performance of asphalt mixture based on pfc2d. Constr. Build. Mater. 2021, 283, 122792. [Google Scholar] [CrossRef]
- Liu, D.; Tu, Y.; Sas, G.; Elfgren, L. Freeze-thaw damage evaluation and model creation for concrete exposed to freeze–thaw cycles at early-age. Constr. Build. Mater. 2021, 312, 125352. [Google Scholar] [CrossRef]
- Li, J.; Pierce, L.M.; Uhlmeyer, J. Calibration of flexible pavement in mechanistic–empirical pavement design guide for washington state. Transp. Res. Rec. 2009, 2095, 73–83. [Google Scholar] [CrossRef]
- Pierce, L.M.; McGovern, G. Implementation of the Aashto Mechanistic-Empirical Pavement Design Guide and Software; Transportation Research Board: Washington, DC, USA, 2014. [Google Scholar]
- Li, T.; Kong, L.; Guo, A. The deformation and microstructure characteristics of expansive soil under freeze–thaw cycles with loads. Cold Reg. Sci. Technol. 2021, 192, 103393. [Google Scholar] [CrossRef]
- Khoury, N.N.; Zaman, M.M. Effect of wet-dry cycles on resilient modulus of class c coal fly ash-stabilized aggregate base. Transp. Res. Rec. 2002, 1787, 13–21. [Google Scholar] [CrossRef]
- Avirneni, D.; Peddinti, P.R.; Saride, S. Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Constr. Build. Mater. 2016, 121, 198–209. [Google Scholar] [CrossRef]
- Sobhan, K.; Gonzalez, L.; Reddy, D. Durability of a pavement foundation made from recycled aggregate concrete subjected to cyclic wet–dry exposure and fatigue loading. Mater. Struct. 2016, 49, 2271–2284. [Google Scholar] [CrossRef]
- Kampala, A.; Horpibulsuk, S.; Prongmanee, N.; Chinkulkijniwat, A. Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay. J. Mater. Civ. Eng. 2014, 26, 633–643. [Google Scholar] [CrossRef]
- Hanandeh, S.; Ardah, A.; Abu-Farsakh, M. Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula. Transp. Geotech. 2020, 24, 100358. [Google Scholar] [CrossRef]
- Yaghoubi, E.; Yaghoubi, M.; Guerrieri, M.; Sudarsanan, N. Improving expansive clay subgrades using recycled glass: Resilient modulus characteristics and pavement performance. Constr. Build. Mater. 2021, 302, 124384. [Google Scholar] [CrossRef]
- Groeger, J.L.; Rada, G.R.; Lopez, A. Aashto t307—Background and discussion. In Resilient Modulus Testing for Pavement Components; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Kuttah, D. Determining the resilient modulus of sandy subgrade using cyclic light weight deflectometer test. Transp. Geotech. 2021, 27, 100482. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Onyia, M.E.; Onukwugha, E.R.; Nnadi, O.C.; Onuoha, I.C.; Jalal, F.E. Polynomial relationship of compaction properties of silicate-based rha modified expansive soil for pavement subgrade purposes. Epitoanyag J. Silic. Based Compos. Mater. 2020, 72, 223–228. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Iqbal, M.; Javed, M.F.; Jamhiri, B. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: Ann, anfis and gep. J. Environ. Manag. 2021, 289, 112420. [Google Scholar] [CrossRef] [PubMed]
- Kayadelen, C.; Altay, G.; Önal, Y. Numerical simulation and novel methodology on resilient modulus for traffic loading on road embankment. Int. J. Pavement Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Khoury, N.; Brooks, R.; Boeni, S.Y.; Yada, D. Variation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contents. J. Mater. Civ. Eng. 2013, 25, 160–166. [Google Scholar] [CrossRef]
- Mamatha, K.; Dinesh, S. Resilient modulus of black cotton soil. Int. J. Pavement Res. Technol. 2017, 10, 171–184. [Google Scholar] [CrossRef]
- Mengelt, M.; Edil, T.; Benson, C. Resilient modulus and plastic deformation of soil confined in a geocell. Geosynth. Int. 2006, 13, 195–205. [Google Scholar] [CrossRef]
- Maalouf, M.; Khoury, N.; Trafalis, T.B. Support vector regression to predict asphalt mix performance. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 1989–1996. [Google Scholar] [CrossRef]
- Pourtahmasb, M.S.; Karim, M.R.; Shamshirband, S. Resilient modulus prediction of asphalt mixtures containing recycled concrete aggregate using an adaptive neuro-fuzzy methodology. Constr. Build. Mater. 2015, 82, 257–263. [Google Scholar] [CrossRef]
- Oskooei, P.R.; Mohammadinia, A.; Arulrajah, A.; Horpibulsuk, S. Application of artificial neural network models for predicting the resilient modulus of recycled aggregates. Int. J. Pavement Eng. 2020, 23, 1121–1133. [Google Scholar] [CrossRef]
- Gabr, A.R.; Roy, B.; Kaloop, M.R.; Kumar, D.; Arisha, A.; Shiha, M.; Shwally, S.; Hu, J.W.; El-Badawy, S.M. A novel approach for resilient modulus prediction using extreme learning machine-equilibrium optimiser techniques. Int. J. Pavement Eng. 2021, 1–11. [Google Scholar] [CrossRef]
- Kezhen, Y.; Yin, H.; Liao, H.; Huang, L. Prediction of resilient modulus of asphalt pavement material using support vector machine. In Road Pavement and Material Characterization, Modeling, and Maintenance, Proceedings of the GeoHunan International Conference, Changsha, China, 9–11 June 2011; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 16–23. [Google Scholar]
- Kononenko, I. Bayesian neural networks. Biol. Cybern. 1989, 61, 361–370. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Goh, A.T. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [Google Scholar] [CrossRef]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Orhan, U.; Hekim, M.; Ozer, M. Eeg signals classification using the k-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 2011, 38, 13475–13481. [Google Scholar] [CrossRef]
- Piri, J.; Mohammadi, K.; Shamshirband, S.; Akib, S. Assessing the suitability of hybridizing the cuckoo optimization algorithm with ann and anfis techniques to predict daily evaporation. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Aali, K.A.; Parsinejad, M.; Rahmani, B. Estimation of saturation percentage of soil using multiple regression, ann, and anfis techniques. Comput. Inf. Sci. 2009, 2, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Sada, S.; Ikpeseni, S. Evaluation of ann and anfis modeling ability in the prediction of aisi 1050 steel machining performance. Heliyon 2021, 7, e06136. [Google Scholar] [CrossRef]
- Yilmaz, I.; Kaynar, O. Multiple regression, ann (rbf, mlp) and anfis models for prediction of swell potential of clayey soils. Expert Syst. Appl. 2011, 38, 5958–5966. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Rahrovan, M. Application of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet dry cycles. Comput. Mater. Civ. Eng. 2016, 1, 37–47. [Google Scholar]
- Arisha, A. Evaluation of Recycled Clay Masonry Blends in Pavement Construction. Master’s Thesis, Public Works Engineering Department, Mansoura University, Mansoora, Egypt, 2017. [Google Scholar]
- Zaman, M.; Solanki, P.; Ebrahimi, A.; White, L. Neural network modeling of resilient modulus using routine subgrade soil properties. Int. J. Geomech. 2010, 10, 1–12. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yang, J.; Jeong, J.-H. Prediction of subgrade resilient modulus using artificial neural network. KSCE J. Civ. Eng. 2014, 18, 1372–1379. [Google Scholar] [CrossRef]
- Nazzal, M.D.; Tatari, O. Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus. Int. J. Pavement Eng. 2013, 14, 364–373. [Google Scholar] [CrossRef]
- Hanittinan, W. Resilient Modulus Prediction Using Neural Network Algorithm; The Ohio State University: Columbus, OH, USA, 2007. [Google Scholar]
- Kaloop, M.R.; Gabr, A.R.; El-Badawy, S.M.; Arisha, A.; Shwally, S.; Hu, J.W. Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques. Front. Struct. Civ. Eng. 2019, 13, 1379–1392. [Google Scholar] [CrossRef]
- Das, S.K. 10 artificial neural networks in geotechnical engineering: Modeling and application issues. Metaheuristics Water Geotech. Transp. Eng. 2013, 45, 231–267. [Google Scholar]
- Huang, Y. Advances in artificial neural networks–methodological development and application. Algorithms 2009, 2, 973–1007. [Google Scholar] [CrossRef]
- Walczak, S. Artificial neural networks. In Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction; IGI Global: Hershey, PA, USA, 2019; pp. 40–53. [Google Scholar]
- Waszczyszyn, Z. Artificial neural networks in civil engineering: Another five years of research in poland. Comput. Assist. Methods Eng. Sci. 2017, 18, 131–146. [Google Scholar]
- May, R.; Dandy, G.; Maier, H. Review of input variable selection methods for artificial neural networks. Artif. Neural Netw. Methodol. Adv. Biomed. Appl. 2011, 10, 16004. [Google Scholar]
- Chase, C. 1.9 assisted demand planning using machine learning. In Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning; SAS Institute Inc.: Cary, NC, USA, 2021; Volume 110. [Google Scholar]
- Jalal, F.E.; Xu, Y.; Li, X.; Jamhiri, B.; Iqbal, M. Fractal approach in expansive clay-based materials with special focus on compacted gmz bentonite in nuclear waste disposal: A systematic review. Environ. Sci. Pollut. Res. 2021, 28, 43287–43314. [Google Scholar] [CrossRef]
- Jalal, F.E.; Mulk, S.; Memon, S.A.; Jamhiri, B.; Naseem, A. Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash. Adv. Civ. Eng. 2021, 2021, 9918757. [Google Scholar] [CrossRef]
- Jalal, F.E.; Jamhiri, B.; Naseem, A.; Hussain, M.; Iqbal, M.; Onyelowe, K. Isolated effect and sensitivity of agricultural and industrial waste ca-based stabilizer materials (csms) in evaluating swell shrink nature of palygorskite-rich clays. Adv. Civ. Eng. 2021, 2021, 7752007. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Iqbal, M.; Jamhiri, B.; Javed, M.F. Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms. Transp. Geotech. 2021, 30, 100608. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhang, D.; Jalal, F.E.; Javed, M.F. Computational ai prediction models for residual tensile strength of gfrp bars aged in the alkaline concrete environment. Ocean. Eng. 2021, 232, 109134. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Liu, Q.-f.; Azim, I.; Zhu, X.; Yang, J.; Javed, M.F.; Rauf, M. Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. J. Hazard. Mater. 2020, 384, 121322. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.Y.; Sharifi, A. Gene expression programming (gep) to predict coefficient of discharge for oblique side weir. Appl. Water Sci. 2020, 10, 145. [Google Scholar] [CrossRef]
- Faradonbeh, R.S.; Hasanipanah, M.; Amnieh, H.B.; Armaghani, D.J.; Monjezi, M. Development of gp and gep models to estimate an environmental issue induced by blasting operation. Environ. Monit. Assess. 2018, 190, 351. [Google Scholar] [CrossRef]
- Ferreira, C. Gene expression programming in problem solving. In Soft Computing and Industry; Springer: Berlin/Heidelberg, Germany, 2002; pp. 635–653. [Google Scholar]
- Shah, M.I.; Javed, M.F.; Abunama, T. Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques. Environ. Sci. Pollut. Res. 2020, 28, 13202–13220. [Google Scholar]
- Zou, W.-L.; Han, Z.; Ding, L.-Q.; Wang, X.-Q. Predicting resilient modulus of compacted subgrade soils under influences of freeze–thaw cycles and moisture using gene expression programming and artificial neural network approaches. Transp. Geotech. 2021, 28, 100520. [Google Scholar] [CrossRef]
- Sharma, L.; Singh, R.; Umrao, R.K.; Sharma, K.M.; Singh, T.N. Evaluating the modulus of elasticity of soil using soft computing system. Eng. Comput. 2017, 33, 497–507. [Google Scholar] [CrossRef]
- Elbagalati, O.; Elseifi, M.A.; Gaspard, K.; Zhang, Z. Development of an artificial neural network model to predict subgrade resilient modulus from continuous deflection testing. Can. J. Civ. Eng. 2017, 44, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Cong, T.; Su, G.; Qiu, S.; Tian, W. Applications of anns in flow and heat transfer problems in nuclear engineering: A review work. Prog. Nucl. Energy 2013, 62, 54–71. [Google Scholar] [CrossRef]
- Rafiq, M.; Bugmann, G.; Easterbrook, D. Neural network design for engineering applications. Comput. Struct. 2001, 79, 1541–1552. [Google Scholar] [CrossRef]
- Ghorbani, A.; Hasanzadehshooiili, H. Prediction of ucs and cbr of microsilica-lime stabilized sulfate silty sand using ann and epr models; application to the deep soil mixing. Soils Found. 2018, 58, 34–49. [Google Scholar] [CrossRef]
- Gao, W.; Raftari, M.; Rashid, A.S.A.; Mu’azu, M.A.; Jusoh, W.A.W. A predictive model based on an optimized ann combined with ica for predicting the stability of slopes. Eng. Comput. 2020, 36, 325–344. [Google Scholar] [CrossRef]
- Liu, L.; Moayedi, H.; Rashid, A.S.A.; Rahman, S.S.A.; Nguyen, H. Optimizing an ann model with genetic algorithm (ga) predicting load-settlement behaviours of eco-friendly raft-pile foundation (erp) system. Eng. Comput. 2020, 36, 421–433. [Google Scholar] [CrossRef]
- Das, G.; Pattnaik, P.K.; Padhy, S.K. Artificial neural network trained by particle swarm optimization for non-linear channel equalization. Expert Syst. Appl. 2014, 41, 3491–3496. [Google Scholar] [CrossRef]
- Prasad, B.R.; Eskandari, H.; Reddy, B.V. Prediction of compressive strength of scc and hpc with high volume fly ash using ann. Constr. Build. Mater. 2009, 23, 117–128. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Iqbal, M.; Jalal, F.E.; Onyia, M.E.; Onuoha, I.C. Application of 3-algorithm ann programming to predict the strength performance of hydrated-lime activated rice husk ash treated soil. Multiscale Multidiscip. Modeling Exp. Des. 2021, 4, 259–274. [Google Scholar] [CrossRef]
- Khan, M.I.; Sutanto, M.H.; Khan, K.; Iqbal, M.; Napiah, M.B.; Zoorob, S.E.; Klemeš, J.J.; Bokhari, A.; Rafiq, W. Effective use of recycled waste pet in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network. J. Clean. Prod. 2022, 340, 130840. Available online: https://www.sciencedirect.com/science/article/pii/S0959652622004784 (accessed on 4 April 2022). [CrossRef]
- Amin, M.N.; Iqbal, M.; Khan, K.; Qadir, M.G.; Shalabi, F.I.; Jamal, A. Ensemble tree-based approach towards flexural strength prediction of frp reinforced concrete beams. Polymers 2022, 14, 1303. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhao, Q.; Zhang, D.; Jalal, F.E.; Jamal, A. Evaluation of tensile strength degradation of gfrp rebars in harsh alkaline conditions using non-linear genetic-based models. Mater. Struct. 2021, 54, 190. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A.; Arashpour, M. Predicting the compressive strength of normal and high-performance concretes using ann and anfis hybridized with grey wolf optimizer. Constr. Build. Mater. 2020, 232, 117266. Available online: http://www.sciencedirect.com/science/article/pii/S0950061819327187 (accessed on 7 April 2022). [CrossRef]
- Chu, H.-H.; Khan, M.A.; Javed, M.; Zafar, A.; Khan, M.I.; Alabduljabbar, H.; Qayyum, S. Sustainable use of fly-ash: Use of gene-expression programming (gep) and multi-expression programming (mep) for forecasting the compressive strength geopolymer concrete. Ain Shams Eng. J. 2021, 12, 3603–3617. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Iqbal, M.F.; Mahmood, Z.; Javed, M.F.; Wang, F.; Liu, Q.-f. Prediction of catenary action capacity of rc beam-column substructures under a missing column scenario using evolutionary algorithm. KSCE J. Civ. Eng. 2021, 25, 891–905. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Dai, J.-G.; Kazmi, S.M.S.; Munir, M.J. Evolutionary artificial intelligence approach for performance prediction of bio-composites. Constr. Build. Mater. 2021, 290, 123254. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Kazemi, S.-F.; Mosavi, A.; Nasseralshariati, E.; Tah, J.H. Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 2019, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, S.; Rajaei, S.; Jiao, P.; Sabz, A.; Soheilinia, S. New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement 2018, 113, 99–107. [Google Scholar] [CrossRef]
- Javed, M.F.; Farooq, F.; Memon, S.A.; Akbar, A.; Khan, M.A.; Aslam, F.; Alyousef, R.; Alabduljabbar, H.; Rehman, S.K.U. New prediction model for the ultimate axial capacity of concrete-filled steel tubes: An evolutionary approach. Crystals 2020, 10, 741. Available online: https://www.mdpi.com/2073-4352/10/9/741 (accessed on 7 April 2022). [CrossRef]
- Alavi, A.H.; Mollahasani, A.; Gandomi, A.H.; Bazaz, J.B. Formulation of secant and reloading soil deformation moduli using multi expression programming. Eng. Comput. 2012, 29, 173–197. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Milne, L. Feature selection using neural networks with contribution measures. In Proceedings of the AI-Conference, College Park, MD, USA, 21–24 May 1995. [Google Scholar]
- Liu, Q.-F.; Iqbal, M.F.; Yang, J.; Lu, X.-Y.; Zhang, P.; Rauf, M. Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation. Constr. Build. Mater. 2020, 268, 121082. [Google Scholar] [CrossRef]
- Khan, M.A.; Zafar, A.; Farooq, F.; Javed, M.F.; Alyousef, R.; Alabduljabbar, H.; Khan, M.I. Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with k-fold cross validation. Front. Mater. 2021, 8, 621163. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Javed, M.F.; Rauf, M.; Azim, I.; Ashraf, M.; Yang, J.; Liu, Q.-F. Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Sci. Total Environ. 2021, 780, 146524. [Google Scholar] [CrossRef] [PubMed]
- Azim, I.; Yang, J.; Javed, M.F.; Iqbal, M.F.; Mahmood, Z.; Wang, F.; Liu, Q.-F. Prediction model for compressive arch action capacity of rc frame structures under column removal scenario using gene expression programming. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 25, pp. 212–228. [Google Scholar]
- Jalal, M.; Ramezanianpour, A.A.; Pouladkhan, A.R.; Tedro, P. Application of genetic programming (gp) and anfis for strength enhancement modeling of cfrp-retrofitted concrete cylinders. Neural Comput. Appl. 2013, 23, 455–470. [Google Scholar] [CrossRef]
- Frank, I.E.; Todeschini, R. The Data Analysis Handbook; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Gandomi, A.H.; Roke, D.A. Assessment of artificial neural network and genetic programming as predictive tools. Adv. Eng. Softw. 2015, 88, 63–72. [Google Scholar] [CrossRef]
- Jalal, F.-E.; Xu, Y.; Jamhiri, B.; Memon, S.A. On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (csms): A comprehensive review. Adv. Mater. Sci. Eng. 2020, 2020, 1510969. [Google Scholar] [CrossRef] [Green Version]
- Ali Khan, M.; Zafar, A.; Akbar, A.; Javed, M.F.; Mosavi, A. Application of gene expression programming (gep) for the prediction of compressive strength of geopolymer concrete. Materials 2021, 14, 1106. [Google Scholar] [CrossRef] [PubMed]
- Alade, I.O.; Bagudu, A.; Oyehan, T.A.; Rahman, M.A.A.; Saleh, T.A.; Olatunji, S.O. Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model. Comput. Methods Programs Biomed. 2018, 163, 135–142. [Google Scholar] [CrossRef]
- Iqbal, M.; Onyelowe, K.C.; Jalal, F.E. Smart computing models of california bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multiscale Multidiscip. Model. Exp. Des. 2021, 4, 207–225. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H. Ann and gep prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar. Constr. Build. Mater. 2018, 189, 978–992. Available online: http://www.sciencedirect.com/science/article/pii/S0950061818322086 (accessed on 12 May 2022). [CrossRef]
- Eskandari-Naddaf, H.; Kazemi, R. Ann prediction of cement mortar compressive strength, influence of cement strength class. Constr. Build. Mater. 2017, 138, 1–11. [Google Scholar] [CrossRef]
Variable | Description | Unit | Min | Max | Mean | Standard Deviation | Range | |
---|---|---|---|---|---|---|---|---|
Inputs | WDC | Wet–dry cycle | - | 0 | 30 | 12.795 | 11.158 | 30 |
CSAFR | Calcium oxide to SAF ratio | - | 0.113 | 0.51 | 0.255 | 0.183 | 0.397 | |
DMR | Ratio of maximum dry density to the optimum moisture content | kg·m−3 | 2.34 | 4.63 | 3.266 | 0.712 | 2.29 | |
σ3 | Confining pressure | kPa | 0 | 138 | 70.127 | 48.864 | 138 | |
σ4 | Deviator stress | kPa | 69 | 277 | 171.818 | 77.638 | 208 | |
Target | Mr | Resilient modulus | kPa | 585 | 9803 | 3684.058 | 1860.495 | 9218 |
WDC | CSAFR | DMR | σ3 | σ4 | Mr | |
---|---|---|---|---|---|---|
WDC | 1 | −0.05152 | −0.01054 | 0.004294 | 0.016821 | −0.29605 |
CSAFR | −0.05152 | 1 | 0.27031 | 0.013486 | −0.01867 | 0.457157 |
DMR | −0.01054 | 0.27031 | 1 | 0.006829 | −0.0216 | 0.714551 |
σ3 | 0.004294 | 0.013486 | 0.006829 | 1 | −0.0019 | 0.076791 |
σ4 | 0.016821 | −0.01867 | −0.0216 | −0.0019 | 1 | 0.137871 |
Mr | −0.29605 | 0.457157 | 0.714551 | 0.076791 | 0.137871 | 1 |
Parameter | Setting |
---|---|
Sampling | |
Training records | 492 |
Validation/testing | 212 |
General | |
Type | Input–output and curve fitting |
Number of hidden neurons | 10 |
Training Algorithm | Levenberg–Marquardt |
Maximum Iterations | 1000 |
Data division | Random |
Trial No. | Total Datasets | No. of Inputs | Fitness Function | No. of Chromosomes | No. of Genes | Head Size | Order of Variable Importance | Training Dataset | Validation Data | ||
---|---|---|---|---|---|---|---|---|---|---|---|
R | MAE | R | MAE | ||||||||
1 | 704 | 5 | RMSE | 30 | 3 | 8 | 32154 | 0.83 | 748 | 0.827 | 814 |
2 | 4 | 31452 | 0.854 | 783 | 0.89 | 743 | |||||
3 | 5 | 31425 | 0.86 | 764 | 0.89 | 742 | |||||
4 | 100 | 4 | 10 | 31245 | 0.85 | 790 | 0.877 | 782 | |||
5 | 5 | 32154 | 0.82 | 829 | 0.85 | 805 | |||||
6 | MAE | 32154 | 0.8 | 806 | 0.82 | 800 | |||||
7 | RSE | 31254 | 0.85 | 776 | 0.87 | 794 |
Model | Statistical Parameter | Training Set | Testing Set | Validation Set |
---|---|---|---|---|
ANN | MAE | 245 | 255 | 227 |
R | 0.983 | 0.986 | 0.985 | |
RSE | 0.033 | 0.028 | 0.03 | |
RMSE | 60.52 | 62.03 | 61.42 | |
GEP | MAE | 764 | 742 | 743 |
R | 0.86 | 0.89 | 0.88 | |
RSE | 0.37 | 0.32 | 0.29 | |
RMSE | 60.6 | 62.31 | 60.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, K.; Jalal, F.E.; Khan, M.A.; Salami, B.A.; Amin, M.N.; Alabdullah, A.A.; Samiullah, Q.; Arab, A.M.A.; Faraz, M.I.; Iqbal, M. Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches. Materials 2022, 15, 4386. https://doi.org/10.3390/ma15134386
Khan K, Jalal FE, Khan MA, Salami BA, Amin MN, Alabdullah AA, Samiullah Q, Arab AMA, Faraz MI, Iqbal M. Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches. Materials. 2022; 15(13):4386. https://doi.org/10.3390/ma15134386
Chicago/Turabian StyleKhan, Kaffayatullah, Fazal E. Jalal, Mohsin Ali Khan, Babatunde Abiodun Salami, Muhammad Nasir Amin, Anas Abdulalim Alabdullah, Qazi Samiullah, Abdullah Mohammad Abu Arab, Muhammad Iftikhar Faraz, and Mudassir Iqbal. 2022. "Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches" Materials 15, no. 13: 4386. https://doi.org/10.3390/ma15134386
APA StyleKhan, K., Jalal, F. E., Khan, M. A., Salami, B. A., Amin, M. N., Alabdullah, A. A., Samiullah, Q., Arab, A. M. A., Faraz, M. I., & Iqbal, M. (2022). Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environments: ANN and GEP Approaches. Materials, 15(13), 4386. https://doi.org/10.3390/ma15134386