Friction Force Adjustment by an Innovative Covering System Applied with Superelastic NiTi Brackets and Wires—An In-Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Covering Design and 3D Printing
2.2. Functional Prototypes
2.3. Friction Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- With the different coverings tested in this study, it was possible to control friction force levels independently of the clinician;
- Coverings delivering higher frictional forces are useful for dental anchorage, while coverings providing lower frictional forces can be used for facilitating tooth movement;
- Given the material properties of superelastic NiTi, temperature had a significant effect on the resulting frictional forces;
- In an Angle Class I case with minor crowding and/or retruded teeth, as well as in cases with reciprocal gap closure, low friction is usually desired. In this case, it should be possible to perform the treatment with a friction-free covering serving only esthetic purposes;
- In patients with Angle Class II, III, and patients with crowding that needs to be resolved in sagittal direction, dental anchorage is an important aspect. Friction can be controlled by changing the width of the covering.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husain, N.; Kumar, A. Frictional resistance between orthodontic brackets and archwire: An in vitro study. J. Contemp. Dent. Pract. 2011, 12, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Stocker, T.; Bamidis, E.P.; Sabbagh, H.; Baumert, U.; Mertmann, M.; Wichelhaus, A. Effect of different media on frictional forces between tribological systems made from self-ligating brackets in combination with different stainless steel wire dimensions. Dent. Mater. J. 2021, 40, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Omana, H.M.; Moore, R.N.; Bagby, M.D. Frictional properties of metal and ceramic brackets. J. Clin. Orthod. 1992, 26, 425–432. [Google Scholar] [PubMed]
- Williams, C.L.; Khalaf, K. Frictional resistance of three types of ceramic brackets. J. Oral Maxillofac. Res. 2013, 4, e3. [Google Scholar] [CrossRef] [Green Version]
- Mezeg, U.; Primozic, J. Influence of long-term in vivo exposure, debris accumulation and archwire material on friction force among different types of brackets and archwires couples. Eur. J. Orthod. 2017, 39, 673–679. [Google Scholar] [CrossRef]
- Huffman, D.J.; Way, D.C. A clinical evaluation of tooth movement along arch wires of two different sizes. Am. J. Orthod. 1983, 83, 453–459. [Google Scholar] [CrossRef]
- Al-Thomali, Y.; Mohamed, R.N.; Basha, S. Torque expression in self-ligating orthodontic brackets and conventionally ligated brackets: A systematic review. J. Clin. Exp. Dent. 2017, 9, e123–e128. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; He, D.; Guo, W.; Huang, Y.; He, G.; Xing, Z.; Wang, H. Study on Properties of Potassium Sodium Niobate Coating Prepared by High Efficiency Supersonic Plasma Spraying. Actuators 2022, 11, 28. [Google Scholar] [CrossRef]
- Hain, M.; Dhopatkar, A.; Rock, P. A comparison of different ligation methods on friction. Am. J. Orthod. Dentofacial. Orthop. 2006, 130, 666–670. [Google Scholar] [CrossRef]
- Monteiro, M.R.; Silva, L.E.; Elias, C.N.; Vilella Ode, V. Frictional resistance of self-ligating versus conventional brackets in different bracket-archwire-angle combinations. J. Appl. Oral Sci. 2014, 22, 228–234. [Google Scholar] [CrossRef]
- Fidalgo, T.K.; Pithon, M.M.; Maciel, J.V.; Bolognese, A.M. Friction between different wire bracket combinations in artificial saliva—An in vitro evaluation. J. Appl. Oral Sci. 2011, 19, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wichelhaus, A.; Geserick, M.; Hibst, R.; Sander, F.G. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. Dent. Mater. 2005, 21, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, R.F.; de Oliveira, R.S.; Chaves, M.; Elias, C.N.; Gravina, M.A. Evaluation of the friction force generated by monocristalyne and policristalyne ceramic brackets in sliding mechanics. Dent. Press J. Orthod. 2013, 18, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cury, S.E.; Aliaga-Del Castillo, A.; Pinzan, A.; Sakoda, K.L.; Bellini-Pereira, S.A.; Janson, G. Orthodontic brackets friction changes after clinical use: A systematic review. J. Clin. Exp. Dent. 2019, 11, e482–e490. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, H.; Shi, T.; Zahng, C.; Jiang, X.; Zhou, X.; Li, C. Efficient Preparation and Anticorrosion Mechanism of Superhydrophobic 7075 Aviation Aluminum Alloy. Rare Metal. Mater. Eng. 2022, 51, 6–10. [Google Scholar]
- Wichelhaus, A. A new elastic slot system and V-wire mechanics. Angle Orthod. 2017, 87, 774–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalstra, M.; Eriksen, H.; Bergamini, C. Actual versus theoretical torsional play in conventional and self-ligating bracket systems. J. Orthod. 2015, 42, 103–113. [Google Scholar] [CrossRef]
- Daratsianos, N.; Bourauel, C.; Fimmers, R.; Jager, A.; Schwestka-Polly, R. In vitro biomechanical analysis of torque capabilities of various 0.018″ lingual bracket-wire systems: Total torque play and slot size. Eur. J. Orthod. 2016, 38, 459–469. [Google Scholar] [CrossRef]
- Major, T.W.; Carey, J.P.; Nobes, D.S.; Major, P.W. Orthodontic Bracket Manufacturing Tolerances and Dimensional Differences between Select Self-Ligating Brackets. J. Dent. Biomech. 2010, 2010, 781321. [Google Scholar] [CrossRef]
- DIN 13996:2012-08; Dentistry-Dimensions for Archwires and Attachments for Orthodontic Appliances. Normenausschuss Dental-NADENT: Pforzheim, Germany, 2012. [CrossRef]
- Braian, M.; Jimbo, R.; Wennerberg, A. Production tolerance of additive manufactured polymeric objects for clinical applications. Dent. Mater. 2016, 32, 853–861. [Google Scholar] [CrossRef]
- Sander, H.C.; Sander, C.; Schwestka-Polly, R. A Comparison of Friction Behaviour Using Two Completely Customized Lingual Bracket Systems. Inf. Aus Orthod. Kieferorthopädie 2015, 47, 187–191. [Google Scholar] [CrossRef]
- Kusy, R.P.; O’Grady, P.W. Evaluation of titanium brackets for orthodontic treatment: Part II—The active configuration. Am. J. Orthod. Dentofacial. Orthop. 2000, 118, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Articolo, L.C.; Kusy, R.P. Influence of angulation on the resistance to sliding in fixed appliances. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 39–51. [Google Scholar] [CrossRef]
- Stocker, T.; Li, H.; Bamidis, E.P.; Baumert, U.; Hoffmann, L.; Wichelhaus, A.; Sabbagh, H. Influence of normal forces on the frictional behavior in tribological systems made of different bracket types and wire dimensions. Dent. Mater. J. 2022. accepted. [Google Scholar] [CrossRef]
- Burrow, S.J. Friction and resistance to sliding in orthodontics: A critical review. Am. J. Orthod. Dentofacial. Orthop. 2009, 135, 442–447. [Google Scholar] [CrossRef]
- Thorstenson, G.A.; Kusy, R.P. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am. J. Orthod. Dentofacial. Orthop. 2001, 120, 361–370. [Google Scholar] [CrossRef]
- Kusy, R.P.; Whitley, J.Q. Influence of archwire and bracket dimensions on sliding mechanics: Derivations and determinations of the critical contact angles for binding. Eur. J. Orthod. 1999, 21, 199–208. [Google Scholar] [CrossRef] [Green Version]
- El-Bialy, T.; Alobeid, A.; Dirk, C.; Jager, A.; Keilig, L.; Bourauel, C. Comparison of force loss due to friction of different wire sizes and materials in conventional and new self-ligating orthodontic brackets during simulated canine retraction. J. Orofac. Orthop. 2019, 80, 68–78. [Google Scholar] [CrossRef]
- Drescher, D.; Bourauel, C.; Thier, M. The materials engineering characteristics of orthodontic nickel-titanium wires. Fortschr. Kieferorthop. 1990, 51, 320–326. [Google Scholar] [CrossRef]
- Fischer-Brandies, H.; Es-Souni, M.; Kock, N.; Raetzke, K.; Bock, O. Transformation behavior, chemical composition, surface topography and bending properties of five selected 0.016″ × 0.022″ NiTi archwires. J. Orofac. Orthop. 2003, 64, 88–99. [Google Scholar] [CrossRef]
- Razali, M.F.; Mahmud, A.S.; Mokhtar, N. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: A finite element study. J. Mech. Behav. Biomed. Mater. 2018, 77, 234–241. [Google Scholar] [CrossRef]
- Duerig, T.W.; Bhattacharya, K. The Influence of the R-Phase on the Superelastic Behavior of NiTi. Shape Mem. Superelast. 2015, 1, 153–161. [Google Scholar] [CrossRef]
- Chang, C.J.; Lee, T.M.; Liu, J.K. Effect of bracket bevel design and oral environmental factors on frictional resistance. Angle Orthod. 2013, 83, 956–965. [Google Scholar] [CrossRef] [PubMed]
Temperature/Medium | Friction [N]—Median [Min; Max] | |||||
---|---|---|---|---|---|---|
NF0550 | FC0440 | FC0435 | FC0433 | FC04315 | FC0430 | |
RT/dry | 0.02 [0.01;0.42] Ac | 0.38 [0.10;1.08] Bb | 0.96 [0.31;1.44] Cb | 1.11 [0.55;1.80] Dc | 1.59 [0.96;2.39] Ec | 3.09 [1.79;4.01] Fc |
BT/dry | 0.01 [0.00;0.06] Aa | 0.12 [0.01;0.64] Ba | 0.32 [0.05;0.77] Ca | 0.52 [0.02;1.27] Da | 0.40 [0.11;1.21] Da | 1.96 [0.39;2.96] Ea |
RT/AS | 0.01 [0.00;0.14] Ab | 0.86 [0.23;1.60] Bc | 0.96 [0.34;1.46] Cc | 0.97 [0.31;1.62] Cb | 1.01 [0.32;2.29] Db | 2.87 [2.15;4.41] Eb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wichelhaus, A.; Eichenberg, T.; Gruber, P.; Bamidis, E.P.; Stocker, T. Friction Force Adjustment by an Innovative Covering System Applied with Superelastic NiTi Brackets and Wires—An In-Vitro Study. Materials 2022, 15, 4248. https://doi.org/10.3390/ma15124248
Wichelhaus A, Eichenberg T, Gruber P, Bamidis EP, Stocker T. Friction Force Adjustment by an Innovative Covering System Applied with Superelastic NiTi Brackets and Wires—An In-Vitro Study. Materials. 2022; 15(12):4248. https://doi.org/10.3390/ma15124248
Chicago/Turabian StyleWichelhaus, Andrea, Tena Eichenberg, Philip Gruber, Elias Panos Bamidis, and Thomas Stocker. 2022. "Friction Force Adjustment by an Innovative Covering System Applied with Superelastic NiTi Brackets and Wires—An In-Vitro Study" Materials 15, no. 12: 4248. https://doi.org/10.3390/ma15124248
APA StyleWichelhaus, A., Eichenberg, T., Gruber, P., Bamidis, E. P., & Stocker, T. (2022). Friction Force Adjustment by an Innovative Covering System Applied with Superelastic NiTi Brackets and Wires—An In-Vitro Study. Materials, 15(12), 4248. https://doi.org/10.3390/ma15124248