Effect of Dentin Desensitizer Containing Novel Bioactive Glass on the Permeability of Dentin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. BAG Preparation
2.3. Experimental Groups
2.4. Real-Time Dentinal Fluid Flow Reduction Rate (ΔDFF) Measurements
- ΔDFFImmediate (%) = (DFFDemineralized − DFFImmediate)/DFFDemineralized × 100;
- ΔDFF2w storage in SBF (%) = (DFFDemineralized − DFF2w in storage SBF)/DFFDemineralized × 100;
- ΔDFFPost-ultrasonication (%) = (DFFDemineralized − DFFPost-ultrasonication)/DFFDemineralized × 100.
2.5. FE-SEM Analysis of the Desensitizer Surface
2.6. FE-SEM Analysis of the Dentin Surface
2.7. Raman Spectroscopy Analysis
3. Statistical Analysis
4. Results
4.1. Real-Time Dentinal Fluid Flow Reduction Rate (ΔDFF) Measurement
4.2. FE-SEM Analysis of the Desensitizer Surface
4.3. FE-SEM Analysis of the Dentin Surface
4.4. Raman Spectroscopy Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, J.S.; Addy, M. A cross-sectional study of dentine hypersensitivity. J. Clin. Periodontol. 2002, 29, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Gillam, D.G.; Seo, H.S.; Bulman, J.S.; Newman, H.N. Perceptions of dentine hypersensitivity in a general practice population. J. Oral Rehabil. 1999, 26, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Miglani, S.; Aggarwal, V.; Ahuja, B. Dentin hypersensitivity: Recent trends in management. J. Conserv. Dent. 2010, 13, 218–224. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira da Rosa, W.L.; Lund, R.G.; Piva, E.; da Silva, A.F. The effectiveness of current dentin desensitizing agents used to treat dental hypersensitivity: A systematic review. Quintessence Int. 2013, 44, 535–546. [Google Scholar]
- Orchardson, R.; Gillam, D.G. Managing dentin hypersensitivity. J. Am. Dent. Assoc. 2006, 137, 990–998; 1028–1029. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L.; Splinter, R.J.; Allen, W.; Greenlee, T. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Khvostenko, D.; Hilton, T.J.; Ferracane, J.L.; Mitchell, J.C.; Kruzic, J.J. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent. Mater. 2016, 32, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Bakry, A.S.; Tamura, Y.; Otsuki, M.; Kasugai, S.; Ohya, K.; Tagami, J. Cytotoxicity of 45S5 bioglass paste used for dentine hypersensitivity treatment. J. Dent. 2011, 39, 599–603. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, M.G.; Ferracane, J.L.; Davis, H.; Bae, H.E.; Choi, D.; Kim, D.S. Effect of bioactive glass-containing resin composite on dentin remineralization. J. Dent. 2018, 75, 58–64. [Google Scholar] [CrossRef]
- Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.P.; Cama, G.; Brauer, D.S.; Sauro, S. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin. J. Dent. Res. 2017, 96, 999–1005. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jang, J.-H.; Woo, S.U.; Choi, K.-K.; Kim, S.-Y.; Ferracane, J.L.; Lee, J.-H.; Choi, D.; Choi, S.; Kim, S. Effect of novel bioactive glass-containing dentin adhesive on the permeability of demineralized dentin. Materials 2021, 14, 5423. [Google Scholar] [CrossRef]
- Kohda, N.; Iijima, M.; Kawaguchi, K.; Toshima, H.; Muguruma, T.; Endo, K.; Mizoguchi, I. Inhibition of enamel demineralization and bond-strength properties of bioactive glass containing 4-META/MMA-TBB-based resin adhesive. Eur. J. Oral Sci. 2015, 123, 202–207. [Google Scholar] [CrossRef]
- Kim, H.-J.; Mo, S.-Y.; Kim, D.-S. Effect of Bioactive Glass-Containing Light-Curing Varnish on Enamel Remineralization. Materials 2021, 14, 3745. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.S.; Takahashi, H.; Otsuki, M.; Tagami, J. The durability of phosphoric acid promoted bioglass-dentin interaction layer. Dent. Mater. 2013, 29, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.C.; Chen, H.J.; Liu, H.C.; Kang, S.H.; Lee, B.S.; Lin, F.H.; Lin, H.P.; Lin, C.P. A novel mesoporous biomaterial for treating dentin hypersensitivity. J. Dent. Res. 2010, 89, 236–240. [Google Scholar] [CrossRef]
- Gillam, D.G.; Tang, J.Y.; Mordan, N.J.; Newman, H.N. The effects of a novel Bioglass® dentifrice on dentine sensitivity: A scanning electron microscopy investigation. J. Oral Rehabil. 2002, 29, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Liu, J.; Li, X.; Yin, W.; He, T.; Hu, D.; Liao, Y.; Yao, X.; Wang, Y. Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: An in vitro study. Aust. Dent. J. 2015, 60, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Perdigao, J.; Geraldeli, S.; Hodges, J.S. Total-etch versus self-etch adhesive: Effect on postoperative sensitivity. J. Am. Dent. Assoc. 2003, 134, 1621–1629. [Google Scholar] [CrossRef]
- Sohn, S.; Yi, K.; Son, H.H.; Chang, J. Caries-preventive activity of fluoride-containing resin-based desensitizers. Oper. Dent. 2012, 37, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kang, M.-S.; Mahapatra, C.; Kim, H.-W. Effect of aminated mesoporous bioactive glass nanoparticles on the differentiation of dental pulp stem cells. PLoS ONE 2016, 11, e0150727. [Google Scholar] [CrossRef] [Green Version]
- Ciucchi, B.; Bouillaguet, S.; Holz, J.; Pashley, D. Dentinal fluid dynamics in human teeth, in vivo. J. Endod. 1995, 21, 191–194. [Google Scholar] [CrossRef]
- Tas, A.C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 °C in synthetic body fluids. Biomaterials 2000, 21, 1429–1438. [Google Scholar]
- Jalota, S.; Bhaduri, S.B.; Tas, A.C. Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative. Mater. Sci. Eng. 2008, 28, 129–140. [Google Scholar] [CrossRef]
- van der Sluis, L.W.M.; Wu, M.-K.; Wesselink, P.R. The efficacy of ultrasonic irrigation to remove artificially placed dentine debris from human root canals prepared using instruments of varying taper. Int. Endod. J. 2005, 35, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Perdigao, J.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G.; Lopes, A. Field emission SEM comparison of four postfixation drying techniques for human dentin. J. Biomed. Mater. Res. 1995, 29, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Aguilera, F.S.; Osorio, E.; Toledano-Osorio, M.; Escames, G.; Medina-Castillo, A.L.; Toledano, R.; Lynch, C.D.; Osorio, R. Melatonin-doped polymeric nanoparticles reinforce and remineralize radicular dentin: Morpho-histological, chemical and biomechanical studies. Dent. Mater. 2021, 37, 1107–1120. [Google Scholar] [CrossRef]
- Marin, E.; Hiraishi, N.; Honma, T.; Boschetto, F.; Zanocco, M.; Zhu, W.; Adachi, T.; Kanamura, N.; Yamamoto, T.; Pezzotti, G. Raman spectroscopy for early detection and monitoring of dentin demineralization. Dent. Mater. 2020, 36, 1635–1644. [Google Scholar] [CrossRef]
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Jo, S.-A.; Kang, K.; Dhont, J.; Ferracane, J.; Lee, I.-B. Shockwave application enhances the effect of dentin desensitizer. Dent. Mater. 2021, 37, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Ferracane, J.; Kim, H.-Y.; Lee, I.-B. Real-time measurement of dentinal fluid flow during amalgam and composite restoration. J. Dent. 2010, 38, 343–351. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, E.J.; Kim, D.S.; Lee, I.B. The evaluation of dentinal tubule occlusion by desensitizing agents: A real-time measurement of dentinal fluid flow rate and scanning electron microscopy. Oper. Dent. 2013, 38, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.; Lussi, A. Age-related morphological, histological and functional changes in teeth. J. Oral Rehabil. 2017, 44, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.B.; Sinhoreti, M.A.; Gonini Júnior, A.; Consani, S.; Mccabe, J.F. Comparative study of tubular diameter and quantity for human and bovine dentin at different depths. Braz. Dent. J. 2009, 20, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Senawongse, P.; Otsuki, M.; Tagami, J.; Mjör, I.A. Morphological characterization and permeability of attrited human dentine. Arch. Oral Biol. 2008, 53, 14–19. [Google Scholar] [CrossRef]
- Orefice, R.; Hench, L.; Brennan, A. Evaluation of the interactions between collagen and the surface of a bioactive glass during in vitro test. J. Biomed. Mater. Res. A 2009, 90, 114–120. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Torii, Y.; Ogawa, T.; Osaka, A.; Meerbeek, B.V. Self-assembled Nano-layering at the Adhesive interface. J. Dent. Res. 2012, 91, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, Y.; Tay, F.R. Bonding ability of 4-META self-etching primer used with 4-META/MMA-TBB resin to enamel and dentine: Primary vs permanent teeth. J. Dent. 2014, 42, 425–431. [Google Scholar] [CrossRef]
- Yoshida, Y.; Nagakane, K.; Fukuda, R.; Nakayama, Y.; Okazaki, M.; Shintani, H.; Inoue, S.; Tagawa, Y.; Suzuki, K.; De Munck, J.; et al. Comparative Study on adhesive performance of functional monomer. J. Dent. Res. 2004, 83, 454–458. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Latta, M.A. Shear bond strength and physicochemical interactions of XP Bond. J. Adhes. Dent. 2007, 9, 245–248. [Google Scholar]
- Chen, Y.; Tay, F.R.; Lu, Z.; Chen, C.; Qian, M.; Zhang, H.; Tian, F.; Xie, H. Dipentaerythritol penta-acrylate phosphate—An alternative phosphate ester monomer for bonding of methacrylates to zirconia. Sci. Rep. 2016, 6, 39542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliades, G.; Mantzourani, M.; Labella, R.; Mutti, B.; Sharma, D. Interactions of dentine desensitisers with human dentine: Morphology and composition. J. Dent. 2013, 41, S28–S39. [Google Scholar] [CrossRef]
- Sharma, D.; Hong, C.X.; Heipp, P.S. A novel potassium oxalate-containing tooth-desensitising mouthrinse: A comparative in vitro study. J. Dent. 2013, 41, S18–S27. [Google Scholar] [CrossRef]
- Kim, H.-J.; Bae, H.E.; Lee, J.-E.; Park, I.-S.; Kim, H.-G.; Kwon, J.; Kim, D.-S. Effects of bioactive glass incorporation into glass ionomer cement on demineralized dentin. Sci. Rep. 2021, 11, 7016. [Google Scholar] [CrossRef]
- Sauro, S.; Osorio, R.; Watson, T.F.; Toledano, M. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. J. Mater. Sci. Mater. Med. 2012, 23, 1521–1532. [Google Scholar] [CrossRef]
- Khalid, M.; Bora, T.; Ghaithi, A.A.; Thukral, S.; Dutta, J. Raman spectroscopy detects changes in bone mineral quality and collagen cross-linkage in staphylococcus infected human bone. Sci. Rep. 2018, 8, 9417. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Zhu, W.; Boffelli, M.; Adachi, T.; Ichioka, H.; Yamamoto, T.; Marunaka, Y.; Kanamura, N. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations. Anal. Bioanal. Chem. 2015, 407, 3325–3342. [Google Scholar] [CrossRef]
- Adachi, T.; Pezzotti, G.; Yamamoto, T.; Ichioka, H.; Boffelli, M.; Zhu, W.; Kanamura, N. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth. Anal. Bioanal. Chem. 2015, 407, 3343–3356. [Google Scholar] [CrossRef]
- Choi, S.; Moon, S.W.; Shin, J.H.; Park, H.K.; Jin, K.H. Label-free biochemical analytic method for the early detection of adenoviral conjunctivitis using human tear biofluids. Anal. Chem. 2014, 86, 11093–11099. [Google Scholar] [CrossRef] [PubMed]
Group | Description of Experimental Material (Product, Manufacturer) | Chemical Composition |
---|---|---|
SNP | Commercial resin-based desensitizer (Seal & Protect, Dentsply Sirona, Tulsa, OK, USA) | Di-and tri-methacrylate resin, PENTA, functionalized amorphous silica, photoinitiator, butylated hydroxytoluene, cetylamine hydrofluoride, triclosan, acetone |
BAG | BAG-containing desensitizer | 85SBAG (3%), UDMA (42.8%), HEMA (12.2%), CQ (0.5%), ethanol (40%), BHT (0.25%), TP (0.25%), EDMAB (1%) |
BAGMDP | Desensitizer containing BAG and 10-MDP | 85SBAG (3%), 10-MDP (5%), UDMA (37.8%), HEMA (12.2%), CQ (0.5%), ethanol (40%), BHT (0.25%), TP (0.25%), EDMAB (1%) |
BAGMETA | Desensitizer containing BAG and 4-META | 85SBAG (3%), 4-META (5%), UDMA (37.8%), HEMA (12.2%), CQ (0.5%), ethanol (40%), BHT (0.25%), TP (0.25%), EDMAB (1%) |
SNP | BAG | BAGMDP | BAGMETA | ||
---|---|---|---|---|---|
DFF rate (nL/s) | Demineralized | 6.50 ± 6.77 | 3.68 ± 1.02 | 4.62 ± 2.40 | 7.30 ± 6.00 |
Immediate | 3.04 ± 3.38 | 1.74 ± 0.54 | 1.91 ± 0.95 | 3.02 ± 2.27 | |
2w storage in SBF | 2.99 ± 3.17 | 1.09 ± 0.36 | 1.03 ± 0.53 | 1.78 ± 1.41 | |
Post-ultrasonication | 3.98 ± 4.28 | 1.45 ± 0.46 | 1.25 ± 0.64 | 2.18 ± 1.71 | |
ΔDFF (%) | ΔDFFImmediate | 54.63 ± 3.19 aB | 53.35 ± 3.10 aA | 57.69 ± 3.84 aA | 57.13 ± 3.71 aA |
ΔDFF2w in SBF | 54.29 ± 1.04 aB | 70.84 ± 2.93 bcC | 77.09 ± 4.31 cdB | 75.18 ± 3.26 cC | |
ΔDFFPost-ultrasonication | 39.44 ± 2.34 aA | 61.12 ± 3.35 bB | 72.39 ± 5.74 cB | 69.61 ± 2.70 cB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.-H.; Kim, H.-J.; Choi, J.-Y.; Kim, H.-W.; Choi, S.; Kim, S.; Bang, A.; Kim, D.-S. Effect of Dentin Desensitizer Containing Novel Bioactive Glass on the Permeability of Dentin. Materials 2022, 15, 4041. https://doi.org/10.3390/ma15124041
Jang J-H, Kim H-J, Choi J-Y, Kim H-W, Choi S, Kim S, Bang A, Kim D-S. Effect of Dentin Desensitizer Containing Novel Bioactive Glass on the Permeability of Dentin. Materials. 2022; 15(12):4041. https://doi.org/10.3390/ma15124041
Chicago/Turabian StyleJang, Ji-Hyun, Hyun-Jung Kim, Joo-Young Choi, Hae-Won Kim, Samjin Choi, Soogeun Kim, Ayoung Bang, and Duck-Su Kim. 2022. "Effect of Dentin Desensitizer Containing Novel Bioactive Glass on the Permeability of Dentin" Materials 15, no. 12: 4041. https://doi.org/10.3390/ma15124041
APA StyleJang, J.-H., Kim, H.-J., Choi, J.-Y., Kim, H.-W., Choi, S., Kim, S., Bang, A., & Kim, D.-S. (2022). Effect of Dentin Desensitizer Containing Novel Bioactive Glass on the Permeability of Dentin. Materials, 15(12), 4041. https://doi.org/10.3390/ma15124041