Mesoscale Modeling Study on Mechanical Deterioration of Alkali–Aggregate Reaction-Affected Concrete
Abstract
:1. Introduction
2. Mesoscale Modeling Approach
2.1. Mesoscale Model of AAR
2.2. Mesoscale Particle Model of Concrete Samples
3. Results
3.1. AAR Process of Concrete
3.2. Deterioration of the Concrete Specimen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iskhakov, T.; Giebson, C.; Timothy, J.J.; Ludwig, H.M.; Meschke, G. Deterioration of concrete due to ASR: Experiments and multiscale modeling. Cem. Concr. Res. 2021, 149, 106575. [Google Scholar] [CrossRef]
- Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.; Thomas, M.D. Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 2015, 76, 130–146. [Google Scholar] [CrossRef]
- Wang, X.; Nguyen, M.; Stewart, M.G.; Syme, M.; Leitch, A. Analysis of Climate Change Impacts on the Deterioration of Concrete Infrastructure–Synthesis Report; CSIRO: Canberra, Australia, 2010; Volume 643, p. 1. ISBN 978 0 643 10364 1. [Google Scholar]
- Hayes, N.W.; Gui, Q.; Abd-Elssamd, A.; le Pape, Y.; Giorla, A.B.; le Pape, S.; Giannini, E.R.; Ma, Z.J. Monitoring alkali-silica reaction significance in nuclear concrete structural members. J. Adv. Concr. Technol. 2018, 16, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.W.; Feng, Y.T.; Wang, J.T.; Sun, Q.C.; Zhang, C.H.; Owen, D.R.J. Modeling of alkali-silica reaction in concrete: A review. Front. Struct. Civ. Eng. 2012, 6, 1–18. [Google Scholar] [CrossRef]
- Ji, X.; Takahashi, Y.; Maeshima, T.; Iwaki, I.; Maekawa, K. Simulation of concrete structures deformation affected by alkali-silica reaction considering environmental conditions and multiaxial stress state. Struct. Infrastruct. Eng. 2022. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Saouma, V.E.; Hayes, N.W. A hybrid FE-based predictive framework for ASR-affected structures coupled with accelerated experiments. Eng. Struct. 2021, 234, 111709. [Google Scholar] [CrossRef]
- Ji, X.; Joo, H.E.; Yang, Z.; Takahashi, Y. Time-dependent Effect of Expansion due to Alkali-silica Reaction on Mechanical properties of Concrete. J. Adv. Concr. Technol. 2021, 19, 714–729. [Google Scholar] [CrossRef]
- Mbetmi, G.-D.F.; Multon, S.; de Larrard, T.; Duprat, F.; Tieudjo, D. Sensitivity of an alkali-silica reaction kinetics model to diffusion and reactive mechanisms parameters. Constr. Build. Mater. 2021, 299, 123913. [Google Scholar] [CrossRef]
- Gallyamov, E.; Ramos, A.C.; Corrado, M.; Rezakhani, R.; Molinari, J.-F. Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration. Int. J. Solids Struct. 2020, 207, 262–278. [Google Scholar] [CrossRef]
- Capra, B.; Sellier, A. Orthotropic modelling of alkali-aggregate reaction in concrete structures: Numerical simulations. Mech. Mater. 2003, 35, 817–830. [Google Scholar] [CrossRef]
- Pesavento, F.; Gawin, D.; Wyrzykowski, M.; Schrefler, B.A.; Simoni, L. Modeling alkali–silica reaction in non-isothermal, partially saturated cement based materials. Comput. Methods Appl. Mech. Eng. 2012, 225–228, 5–115. [Google Scholar] [CrossRef]
- Comi, C.; Fedele, R.; Perego, U. A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction. Mech. Mater. 2009, 41, 210–230. [Google Scholar] [CrossRef]
- Rezakhani, R.; Gallyamov, E.; Molinari, J. Meso-scale finite element modeling of Alkali-Silica-Reaction. Constr. Build. Mater. 2021, 278, 122274. [Google Scholar] [CrossRef]
- Suwito, A.; Jin, W.; Xi, Y.; Meyer, C. A mathematical model for the pessimum size effect of ASR in concrete. Concr. Sci. Eng. 2002, 4, 23–34. [Google Scholar]
- Multon, S.; Sellier, A.; Cyr, M. Cyr, Chemo–mechanical modeling for prediction of alkali silica reaction (ASR) expansion. Cem. Concr. Res. 2009, 39, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Charpin, L.; Ehrlacher, A. A computational linear elastic fracture mechanics-based model for alkali–silica reaction. Cem. Concr. Res. 2012, 42, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Rezakhani, R.; Alnaggar, M.; Cusatis, G. Multiscale homogenization analysis of alkali–silica reaction (ASR) effect in concrete. Engineering 2019, 5, 1139–1154. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Steffens, A. Mathematical model for kinetics of alkali–silica reaction in concrete. Cem. Concr. Res. 2000, 30, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, R.; Pellenq, R.J.-M. Alkali silica reaction: A view from the nanoscale. Cem. Concr. Res. 2022, 152, 106652. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Y.; Asamoto, S.; Nagai, K. Mesoscopic simulation of crack propagation and bond behavior in ASR damaged concrete with internal/external restraint by 3D RBSM. Cem. Concr. Compos. 2022, 129, 104488. [Google Scholar] [CrossRef]
- Pan, J.; Feng, Y.T.; Jin, F.; Xu, Y.; Sun, Q.; Zhang, C.; Owen, D.R.J. Meso-scale particle modeling of concrete deterioration caused by alkali-aggregate reaction. Int. J. Numer. Anal. Methods Geomech. 2012, 37, 2690–2705. [Google Scholar] [CrossRef]
- Pan, J.; Wang, W.; Wang, J.; Bai, Y.; Wang, J. Influence of coarse aggregate size on deterioration of concrete affected by alkali-aggregate reaction. Constr. Build. Mater. 2022, 329, 127228. [Google Scholar] [CrossRef]
- Leemann, A.; Lura, P. E-modulus of the alkali–silica-reaction product determined by micro-indentation. Constr. Build. Mater. 2013, 44, 221–227. [Google Scholar] [CrossRef]
- Haha, M.B.; Gallucci, E.; Guidoum, A.; Scrivener, K.L. Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis. Cem. Concr. Res. 2007, 37, 1206–1214. [Google Scholar] [CrossRef]
- Ponce, J.; Batic, O. Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate. Cem. Concr. Res. 2006, 36, 1148–1156. [Google Scholar] [CrossRef]
- Sanchez, L.; Fournier, B.; Jolin, M.; Duchesne, J. Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI). Cem. Concr. Res. 2015, 67, 74–92. [Google Scholar] [CrossRef]
- Dunant, C.F.; Scrivener, K.L. Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework. Cem. Concr. Res. 2010, 40, 517–525. [Google Scholar] [CrossRef]
- Ramos, A.I.C.; Roux-Langlois, C.; Dunant, C.F.; Corrado, M.; Molinari, J.-F. HPC simulations of alkali-silica reaction-induced damage: Influence of alkali-silica gel properties. Cem. Concr. Res. 2018, 109, 90–102. [Google Scholar] [CrossRef]
- Miura, T.; Multon, S.; Kawabata, Y. Influence of the distribution of expansive sites in aggregates on microscopic damage caused by alkali-silica reaction: Insights into the mechanical origin of expansion. Cem. Concr. Res. 2021, 142, 106355. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, J.; Deprez, M.; Cnudde, V.; Ye, G.; Schutter, G.D. 3D microstructure simulation of reactive aggregate in concrete from 2D images as the basis for ASR simulation. Material 2021, 14, 2908. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, J.; Ye, G.; De Schutter, G. A 3D reactive transport model for simulation of the chemical reaction process of ASR at microscale. Cem. Concr. Res. 2022, 151, 106640. [Google Scholar] [CrossRef]
- Yang, L.; Pathirage, M.; Su, H.; Alnaggar, M.; Di Luzio, G.; Cusatis, G. Computational modeling of temperature and relative humidity effects on concrete expansion due to alkali–silica reaction. Cem. Concr. Compos. 2021, 124, 104237. [Google Scholar] [CrossRef]
- Yang, L.; Pathirage, M.; Su, H.; Alnaggar, M.; di Luzio, G.; Cusatis, G. Computational modeling of expansion and deterioration due to alkali–silica reaction: Effects of size range, size distribution, and content of reactive aggregate. Int. J. Solids Struct. 2022, 234, 111220. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, C.H. Numerical study of dynamic behavior of concrete by meso-scale particle element modeling. Int. J. Impact Eng. 2011, 38, 1011–1021. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, C.; Chen, Z. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: II. Particle element simulation and comparison. Eng. Fract. Mech. 2015, 135, 113–125. [Google Scholar] [CrossRef]
- Pan, J.; Zhong, W.; Wang, J.; Zhang, C. Size effect on dynamic splitting tensile strength of concrete: Mesoscale modeling. Cem. Concr. Compos. 2022, 128, 104435. [Google Scholar] [CrossRef]
- Lemarchand, E.; Dormieux, L.; Ulm, F.J. Micromechanics investigation of expansive reactions in chemoelastic concrete. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 2581–2602. [Google Scholar] [CrossRef]
No. | Aggregate Proportion (%) | |
---|---|---|
5~20 mm | 20~40 mm | |
RC40-1 | 35.1 | 26.5 |
RC40-2 | 30.4 | 31.6 |
RC40-3 | 35.3 | 22.2 |
RC20-1 | 55.1 | — |
RC20-2 | 49.1 | — |
RC20-3 | 56.3 | — |
GC40-1 | 35.1 | 26.5 |
GC40-2 | 30.4 | 31.6 |
GC40-3 | 35.3 | 22.2 |
GC20-1 | 55.1 | — |
GC20-2 | 49.1 | — |
GC20-3 | 56.3 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, J.; Wang, J.; He, J.; Pan, J. Mesoscale Modeling Study on Mechanical Deterioration of Alkali–Aggregate Reaction-Affected Concrete. Materials 2022, 15, 3861. https://doi.org/10.3390/ma15113861
Wang W, Wang J, Wang J, He J, Pan J. Mesoscale Modeling Study on Mechanical Deterioration of Alkali–Aggregate Reaction-Affected Concrete. Materials. 2022; 15(11):3861. https://doi.org/10.3390/ma15113861
Chicago/Turabian StyleWang, Weijia, Jimin Wang, Jinting Wang, Jinrong He, and Jianwen Pan. 2022. "Mesoscale Modeling Study on Mechanical Deterioration of Alkali–Aggregate Reaction-Affected Concrete" Materials 15, no. 11: 3861. https://doi.org/10.3390/ma15113861
APA StyleWang, W., Wang, J., Wang, J., He, J., & Pan, J. (2022). Mesoscale Modeling Study on Mechanical Deterioration of Alkali–Aggregate Reaction-Affected Concrete. Materials, 15(11), 3861. https://doi.org/10.3390/ma15113861