Rheological Behaviour of Cementitious Materials Incorporating Solid–Solid Phase Change Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Rheological Measurements
2.4. Spectrophotometer
3. Results and Discussion
3.1. Assessment of s/s PCMs Trapped in Cement Matrix
3.2. Polymer Suspension
3.3. Effect of the s/s PCMs on the Structuration of the Flow
3.4. Effect of the s/s PCMs on the Viscosity
3.5. Yield Stress Evolution as a Function of the s/s PCMs Amount
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Kyoto Protocol; United Nations: Kyoto, Japan, 1997; Volume 61647. [Google Scholar]
- United Nations. Adoption of the Paris Agreement; United Nations: Paris, France, 2015; Volume 21932, pp. 1–32. [Google Scholar]
- International Energy Agency and the United Nations Environment Programme. 2018 Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations: New York, NY, USA, 2018; Volume 325. [Google Scholar]
- Ministère de la Transition Écologique Données et Études Statistiques—Pour le Changement Climatique, L’Énergie, L’environnement, le Logement, et les Transports. Available online: https://www.statistiques.developpement-durable.gouv.fr/ (accessed on 7 June 2019).
- Snoeck, D.; Priem, B.; Dubruel, P.; De Belie, N. Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Mater. Struct. Constr. 2016, 49, 225–239. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Bentz, D.P.; Turpin, R. Potential applications of phase change materials in concrete technology. Cem. Concr. Compos. 2007, 29, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Xie, J.; Liu, J.; Pan, S. Review of Phase Change Materials Integrated in Building Walls for Energy Saving. Procedia Eng. 2015, 121, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Hawes, D.W.; Banu, D.; Feldman, D. Latent heat storage in concrete. Sol. Energy Mater. 1989, 19, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyama, T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1373–1391. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, J. Solar Energy Materials & Solar Cells Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities. Sol. Energy Mater. Sol. Cells 2010, 94, 1038–1048. [Google Scholar] [CrossRef]
- Onder, E.; Sarier, N.; Cimen, E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim. Acta 2008, 467, 63–72. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Thermal insulation capability of PEG-containing polyurethane foams. Thermochim. Acta 2008, 475, 15–21. [Google Scholar] [CrossRef]
- Fang, G.; Li, H.; Yang, F.; Liu, X.; Wu, S. Preparation and characterization of nano-encapsulated n -tetradecane as phase change material for thermal energy storage. Chem. Eng. J. 2009, 153, 217–221. [Google Scholar] [CrossRef]
- Maruoka, N.; Sato, K.; Yagi, J.; Akiyama, T. Development of PCM for Recovering High Temperature Waste Heat and Utilization for Producing Hydrogen by Reforming. ISIJ Int. 2002, 42, 215–219. [Google Scholar] [CrossRef]
- Taguchi, Y.; Yokoyama, H.; Kado, H.; Tanaka, M. Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 41–47. [Google Scholar] [CrossRef]
- Zukowski, M. Experimental study of short term thermal energy storage unit based on enclosed phase change material in polyethylene film bag. Energy Convers. Manag. 2007, 48, 166–173. [Google Scholar] [CrossRef]
- Sánchez, L.; Sánchez, P.; De Lucas, A.; Carmona, M.; Rodríguez, J.F. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym. Sci. 2007, 1377–1385. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Karaipekli, A.; Uzun, O. Microencapsulated n- octacosane as phase change material for thermal energy storage. Sol. Energy 2009, 83, 1757–1763. [Google Scholar] [CrossRef]
- Sari, A.; Alkan, C.; Biçer, A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage. Mater. Chem. Phys. 2012, 133, 87–94. [Google Scholar] [CrossRef]
- Shi, H.; Li, J.; Jin, Y.; Yin, Y.; Zhang, X. Preparation and properties of poly (vinyl alcohol)-g-octadecanol copolymers based solid-solid phase change materials. Mater. Chem. Phys. 2011, 131, 108–112. [Google Scholar] [CrossRef]
- Li, W.D.; Ding, E.Y. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material. Sol. Energy Mater. Sol. Cells 2007, 91, 764–768. [Google Scholar] [CrossRef]
- Wu, B.; Jiang, Y.; Wang, Y.; Zhou, C.; Zhang, X.; Lei, J. Study on a PEG/epoxy shape-stabilized phase change material: Preparation, thermal properties and thermal storage performance. Int. J. Heat Mass Transf. 2018, 126, 1134–1142. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, E.; Li, G. Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer 2002, 43, 117–122. [Google Scholar] [CrossRef]
- Harlé, T.; Nguyen, G.T.; Ledésert, B.; Mélinge, Y.; Hébert, R.L. Cross-linked polyurethane as solid-solid phase change material for low temperature thermal energy storage. Thermochim. Acta 2019, 685, 178–191. [Google Scholar] [CrossRef]
- Lloret, E.; Shahab, A.R.; Linus, M.; Flatt, R.J.; Gramazio, F.; Kohler, M.; Langenberg, S. Complex concrete structures: Merging existing casting techniques with digital fabrication. Mater. Ecol. 2015, 60, 40–49. [Google Scholar] [CrossRef]
- Coussot, P. Rheometry of Pastes, Suspensions, and granular Materials: Applications in Industry and Environment; John and Wiley and Sons: Hoboken, NJ, USA, 2005; ISBN 9780471653691. [Google Scholar]
- Perrot, A.; Lecompte, T.; Khelifi, H.; Brumaud, C.; Hot, J. Yield stress and bleeding of fresh cement pastes. Cem. Concr. Res. 2012, 42, 937–944. [Google Scholar] [CrossRef]
- Pierre, A.; Perrot, A.; Picandet, V.; Guevel, Y. Cellulose ethers and cement paste permeability. Cem. Concr. Res. 2015, 72, 117–127. [Google Scholar] [CrossRef]
- Perrot, A.; Lanos, C.; Melinge, Y.; Estellé, P. Mortar physical properties evolution in extrusion flow. Rheol. Acta 2007, 46, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lu, Q.; Xu, Z.; Liu, Q.; Zeng, H. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions. J. Colloid Interface Sci. 2012, 378, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Flatt, R.J. Towards a prediction of superplasticized concrete rheology. Mater. Struct. 2004, 37, 289–300. [Google Scholar] [CrossRef]
- Wangler, T.; Lloret, E.; Reiter, L.; Hack, N.; Gramazio, F.; Kohler, M.; Bernhard, M.; Dillenburger, B.; Buchli, J.; Roussel, N.; et al. Digital Concrete: Opportunities and Challenges. RILEM Tech. Lett. 2016, 1, 67–75. [Google Scholar] [CrossRef]
- Lucas, S.; Senff, L.; Ferreira, V.M.; Barroso De Aguiar, J.L.; Labrincha, J.A. Fresh State Characterization of Lime Mortars with PCM Additions. Appl. Rheol. 2010, 20, 1–7. [Google Scholar] [CrossRef]
- Sanfelix, S.G.; Santacruz, I.; Szczotok, A.M.; Miguel, L.; Belloc, O.; De, A.G.; Kjøniksen, A. Effect of microencapsulated phase change materials on the flow behavior of cement composites. Constr. Build. Mater. 2019, 202, 353–362. [Google Scholar] [CrossRef]
- Harlé, T.; Ledesert, B.; Nguyen, T.M.G.; Hebert, R.; Melinge, Y. Phase-Change Material for Storing Thermal Energy, Manufacturing Method and Uses of Such a Material. U.S. Patent 16/302,440, 13 June 2019. [Google Scholar]
- Bessaies-bey, H.; Baumann, R.; Schmitz, M.; Radler, M.; Roussel, N. Cement and Concrete Research Organic admixtures and cement particles: Competitive adsorption and its macroscopic rheological consequences. Cem. Concr. Res. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Kirincic, S.; Klofutar, C. Viscosity of aqueous solutions of poly (ethylene glycol) s at 298.15 K. Fluid Phase Equilib. 1999, 155, 311–325. [Google Scholar] [CrossRef]
- Moore, W.R. Viscosities of dilute polymer solutions. Prog. Polym. Sci. 1967, 1, 1–43. [Google Scholar] [CrossRef]
- Krieger, I.M.; Dougherty, T.J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Barnes, H.A.; Hutton, J.F.; Walters, K. An Introduction to Rheology; Elsevier: Amsterdam, The Netherlands, 1989; Volume 3, p. 199. [Google Scholar] [CrossRef]
- Struble, L.; Sun, G.-K. Viscosity of Portland Cem en t Paste as a Function of Concentration Krieger-Dougherty Equation. Adv. Cem. Based Mater. 1995, 2, 62–69. [Google Scholar] [CrossRef]
- Atzeni, C.; Massidda, L.; Sanna, U. Comparison between rhelogical models for Portland cement pastes. Cem. Concr. Res. 1985, 15, 511–519. [Google Scholar] [CrossRef]
- Eirich, F. Rheology: Theory and Applications; Eirich, F., Ed.; Academic Press Inc.: Cambridge, MA, USA, 1956; Volume 1. [Google Scholar]
- Sakai, T. Huggins constant k’ for flexible chain polymers. J. Polym. Sci. Part A-2 Polym. Phys. 1968, 6, 1535–1549. [Google Scholar] [CrossRef]
- Mansoutre, S.; Colombet, P.; Van Damme, H. Water retention and granular rheological behavior of fresh C3S paste as a function of concentration. Cem. Concr. Res. 1999, 29, 1441–1453. [Google Scholar] [CrossRef]
- Toutou, Z.; Roussel, N.; Lanos, C. Rhéologie des suspensions à matrice cimentaire: Approche expérimentale multi- échelle. Rev. Eur. Genie Civ. 2005, 9, 309–320. [Google Scholar] [CrossRef]
Cement Paste | |||||
---|---|---|---|---|---|
Cement (g) | Water (g) | PCMs | |||
Mass (g) | %PCMs | Concentration of the Soluble Part (10−3 mol·L−1) | Φ (10−3 Vol sol/Vol tot) 1 | ||
450 | 225 | 0 | 0 | 0.0 | 0.0 |
450 | 225 | 2.5 | 0.5 | 0.5 | 2.22 |
450 | 225 | 4.5 | 1 | 1.12 | 4.43 |
450 | 225 | 9 | 2 | 2.24 | 8.77 |
450 | 225 | 22.5 | 5 | 5.6 | 21.3 |
450 | 225 | 45 | 10 | 11.2 | 40.6 |
450 | 225 | 67.5 | 15 | 16.8 | 58.2 |
450 | 225 | 90 | 20 | 22.4 | 74.4 |
450 | 225 | 112.5 | 25 | 28 | 89.2 |
450 | 225 | 135 | 30 | 33.6 | 102.9 |
450 | 225 | 157.5 | 35 | 39.2 | 115.5 |
450 | 225 | 180 | 40 | 44.8 | 127.2 |
450 | 225 | 202.5 | 45 | 50.4 | 138.1 |
450 | 225 | 225 | 50 | 112 | 148.3 |
Mortar | ||||||
---|---|---|---|---|---|---|
Cement (g) | Sand (g) | Water (g) | PCMs | |||
Mass (g) | % PCMs | Concentration of the Soluble Part (10−3 mol/L) | Φ (10−3 Vol sol/Vol tot) 1 | |||
450 | 1350 | 225 | 0 | 0 | 0.0 | 0.0 |
450 | 1350 | 225 | 22.5 | 5 | 5.6 | 9.2 |
450 | 1350 | 225 | 45 | 10 | 11.2 | 18.0 |
450 | 1350 | 225 | 67.5 | 15 | 16.8 | 27.4 |
450 | 1350 | 225 | 90 | 20 | 22.4 | 36.2 |
450 | 1350 | 225 | 112.5 | 25 | 28 | 44.8 |
450 | 1350 | 225 | 337.5 | 75 | 84 | 123 |
Ci (10−2 g·L−1) | Tr (%) |
---|---|
5 | 40.39 ± 9 |
10 | 44.40 ± 9 |
15 | 42.99 ± 8 |
20 | 42.40 ± 8 |
PCMs/Water (wt/wt) | Concentration of the Soluble Part (10−3 mol·L−1) | Φ (10−2 Vol sol/Vol tot) | Viscosity (10−3 Pa·s) |
---|---|---|---|
0% | 0 | 0 | 1.0 |
10% | 5.60 | 3.44 | 23.9 |
15% | 7.84 | 4.67 | 44.2 |
20% | 11.2 | 6.38 | 71.8 |
50% | 28.0 | 13.1 | 223 |
75% | 42.0 | 17.1 | 670 |
100% | 56.0 | 20.2 | 2116 |
(L·mol−1) | k | Correlation Coefficient (R2) | |||
---|---|---|---|---|---|
Suspensions of PCMs | 25.5 | 0.4 | 0.5 | 5 | 0.98 |
Cement pastes | 24 | 0.4 | 0.5 | 5 | 0.99 |
Mortar pastes | 20 | 0.015 | 0.5 | 2.5 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plancher, L.; Pierre, A.; Nguyen, G.T.M.; Hébert, R.L.; Ledésert, B.A.; Di Martino, P.; Mélinge, Y. Rheological Behaviour of Cementitious Materials Incorporating Solid–Solid Phase Change Materials. Materials 2022, 15, 20. https://doi.org/10.3390/ma15010020
Plancher L, Pierre A, Nguyen GTM, Hébert RL, Ledésert BA, Di Martino P, Mélinge Y. Rheological Behaviour of Cementitious Materials Incorporating Solid–Solid Phase Change Materials. Materials. 2022; 15(1):20. https://doi.org/10.3390/ma15010020
Chicago/Turabian StylePlancher, Lionel, Alexandre Pierre, Giao T. M. Nguyen, Ronan L. Hébert, Béatrice A. Ledésert, Patrick Di Martino, and Yannick Mélinge. 2022. "Rheological Behaviour of Cementitious Materials Incorporating Solid–Solid Phase Change Materials" Materials 15, no. 1: 20. https://doi.org/10.3390/ma15010020
APA StylePlancher, L., Pierre, A., Nguyen, G. T. M., Hébert, R. L., Ledésert, B. A., Di Martino, P., & Mélinge, Y. (2022). Rheological Behaviour of Cementitious Materials Incorporating Solid–Solid Phase Change Materials. Materials, 15(1), 20. https://doi.org/10.3390/ma15010020