Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers
Abstract
1. Introduction
2. Device Fabrication and Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499. [Google Scholar] [CrossRef]
- Mo, Y.G.; Jeong, J.K.; Kim, H.D.; Chung, H.K. Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays. In Proceedings of the 15th International Display Workshops, IDW’08, Niigata, Japan, 3–5 December 2008. [Google Scholar]
- Park, S.K.; Hwang, C.; Ryu, M.; Yang, S.; Byun, C.; Shin, J.; Lee, J.; Lee, K.; Oh, M.S.; Im, S. Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel. Adv. Mater. 2009, 21, 678–682. [Google Scholar] [CrossRef]
- McCarthy, M.A.; Liu, B.; Donoghue, E.P.; Kravchenko, I.; Kim, D.Y.; So, F.; Rinzler, A.G. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 2011, 332, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Brotherton, S.D. Polycrystalline silicon thin film transistors. Semicond. Sci. Technol. 1995, 10, 721. [Google Scholar] [CrossRef]
- Seo, J.H.; Namdas, E.B.; Gutacker, A.; Heeger, A.J.; Bazan, G.C. Solution-processed organic light-emitting transistors incorporating conjugated polyelectrolytes. Adv. Funct. Mater. 2011, 21, 3667–3672. [Google Scholar] [CrossRef]
- Muhieddine, K.; Ullah, M.; Maasoumi, F.; Burn, P.L.; Namdas, E.B. Hybrid Area-Emitting Transistors: Solution Processable and with High Aperture Ratios. Adv. Mater. 2015, 27, 6677–6682. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.U.; Wang, N.; Tetzner, K.; Seitkhan, A.; Miao, Y.; Sun, Y.; Petty, M.C.; Anthopoulos, T.D.; Wang, J.; Bradley, D.D.C. Light-Emitting Transistors Based on Solution-Processed Heterostructures of Self-Organized Multiple-Quantum-Well Perovskite and Metal-Oxide Semiconductors. Adv. Electron. Mater. 2019, 5, 1800985. [Google Scholar] [CrossRef]
- Chaudhry, M.U.; Tetzner, K.; Lin, Y.-H.; Nam, S.; Pearson, C.; Groves, C.; Petty, M.C.; Anthopoulos, T.D.; Bradley, D.D.C. Low-voltage solution-processed hybrid light-emitting transistors. ACS Appl. Mater. Interfaces 2018, 10, 18445–18449. [Google Scholar] [CrossRef]
- Roelofs, W.S.C.; Adriaans, W.H.; Janssen, R.A.J.; Kemerink, M.; De Leeuw, D.M. Light emission in the unipolar regime of ambipolar organic field-effect transistors. Adv. Funct. Mater. 2013, 23, 4133–4139. [Google Scholar] [CrossRef]
- Ullah, M.; Tandy, K.; Yambem, S.D.; Aljada, M.; Burn, P.L.; Meredith, P.; Namdas, E.B. Simultaneous enhancement of brightness, efficiency, and switching in RGB organic light emitting transistors. Adv. Mater. 2013, 25, 6213–6218. [Google Scholar] [CrossRef]
- Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 2010, 9, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Muccini, M. A bright future for organic field-effect transistors. Nat. Mater. 2006, 5, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Zaumseil, J.; Friend, R.H.; Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 2006, 5, 69–74. [Google Scholar] [CrossRef]
- Zaumseil, J.; Donley, C.L.; Kim, J.S.; Friend, R.H.; Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 2006, 18, 2708–2712. [Google Scholar] [CrossRef]
- Muccini, M.; Toffanin, S. Organic Light-Emitting Transistors: Towards the Next Generation Display Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1118100077. [Google Scholar]
- Cicoira, F.; Santato, C. Organic light emitting field effect transistors: Advances and perspectives. Adv. Funct. Mater. 2007, 17, 3421–3434. [Google Scholar] [CrossRef]
- Chaudhry, M.U.; Muhieddine, K.; Wawrzinek, R.; Sobus, J.; Tandy, K.; Lo, S.; Namdas, E.B. Organic light-emitting transistors: Advances and perspectives. Adv. Funct. Mater. 2019, 30, 1905282. [Google Scholar] [CrossRef]
- Hepp, A.; Heil, H.; Weise, W.; Ahles, M.; Schmechel, R.; von Seggern, H. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 2003, 91, 157406. [Google Scholar] [CrossRef]
- Nakamura, K.; Hata, T.; Yoshizawa, A.; Obata, K.; Endo, H.; Kudo, K. Improvement of metal-insulator-semiconductor-type organic light-emitting transistors. Jpn. J. Appl. Phys. 2008, 47, 1889. [Google Scholar] [CrossRef]
- Ullah, M.; Tandy, K.; Yambem, S.D.; Muhieddine, K.; Ong, W.J.; Shi, Z.; Burn, P.L.; Meredith, P.; Li, J.; Namdas, E.B. Efficient and bright polymer light emitting field effect transistors. Org. Electron. 2015, 17, 371–376. [Google Scholar] [CrossRef]
- Gwinner, M.C.; Kabra, D.; Roberts, M.; Brenner, T.J.K.; Wallikewitz, B.H.; McNeill, C.R.; Friend, R.H.; Sirringhaus, H. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater. 2012, 24, 2728–2734. [Google Scholar] [CrossRef] [PubMed]
- Prosa, M.; Benvenuti, E.; Pasini, M.; Giovanella, U.; Bolognesi, M.; Meazza, L.; Galeotti, F.; Muccini, M.; Toffanin, S. Organic Light-Emitting Transistors with Simultaneous Enhancement of Optical Power and External Quantum Efficiency via Conjugated Polar Polymer Interlayers. ACS Appl. Mater. Interfaces 2018, 10, 25580–25588. [Google Scholar] [CrossRef] [PubMed]
- Zaumseil, J.; McNeill, C.R.; Bird, M.; Smith, D.L.; Paul Ruden, P.; Roberts, M.; McKiernan, M.J.; Friend, R.H.; Sirringhaus, H. Quantum efficiency of ambipolar light-emitting polymer field-effect transistors. J. Appl. Phys. 2008, 103, 064517. [Google Scholar] [CrossRef]
- Dinelli, F.; Capelli, R.; Loi, M.A.; Murgia, M.; Muccini, M.; Facchetti, A.; Marks, T.J. High-mobility ambipolar transport in organic light-emitting transistors. Adv. Mater. 2006, 18, 1416–1420. [Google Scholar] [CrossRef]
- Bisri, S.Z.; Takenobu, T.; Yomogida, Y.; Shimotani, H.; Yamao, T.; Hotta, S.; Iwasa, Y. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 2009, 19, 1728–1735. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Dong, H.; Chen, X.; Hu, W. Challenges and Emerging Opportunities in High-Mobility and Low-Energy-Consumption Organic Field-Effect Transistors. Adv. Energy Mater. 2020, 10, 2000955. [Google Scholar] [CrossRef]
- Chaudhry, M.U.; Panidi, J.; Nam, S.; Smith, A.; Lim, J.; Tetzner, K.; Patsalas, P.A.; Vourlias, G.; Sit, W.; Firdaus, Y. Polymer Light-Emitting Transistors With Charge-Carrier Mobilities Exceeding 1 cm2 V− 1 s−1. Adv. Electron. Mater. 2020, 6, 1901132. [Google Scholar] [CrossRef]
- Ullah, M.; Armin, A.; Tandy, K.; Yambem, S.D.; Burn, P.L.; Meredith, P.; Namdas, E.B. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Yu, H.; Dong, Z.; Guo, J.; Kim, D.; So, F. Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications. ACS Appl. Mater. Interfaces 2016, 8, 10430–10435. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Lee, I.-H.; Park, H.-L.; Lee, S.-H.; Han, J.; Lee, C.; Keum, C.-M.; Lee, S.-D. Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway. J. Appl. Phys. 2017, 121, 24502. [Google Scholar] [CrossRef]
- Kudo, K.; Tanaka, S.; Iizuka, M.; Nakamura, M. Fabrication and device characterization of organic light emitting transistors. Thin Solid Films 2003, 438, 330–333. [Google Scholar] [CrossRef]
- Ohtomo, T.; Hashimoto, K.; Tanaka, H.; Ohmori, Y.; Ozaki, M.; Kajii, H. Improved carrier balance and polarized in-plane light emission at full-channel area in ambipolar heterostructure polymer light-emitting transistors. Org. Electron. 2016, 32, 213–219. [Google Scholar] [CrossRef]
- Ullah, M.; Wawrzinek, R.; Maasoumi, F.; Lo, S.; Namdas, E.B. Semitransparent and Low-Voltage Operating Organic Light-Emitting Field-Effect Transistors Processed at Low Temperatures. Adv. Opt. Mater. 2016, 4, 1022–1026. [Google Scholar] [CrossRef]
- Walker, B.; Ullah, M.; Chae, G.J.; Burn, P.L.; Cho, S.; Kim, J.Y.; Namdas, E.B.; Seo, J.H. High mobility solution-processed hybrid light emitting transistors. Appl. Phys. Lett. 2014, 105, 166_1. [Google Scholar] [CrossRef]
- Muhieddine, K.; Ullah, M.; Pal, B.N.; Burn, P.; Namdas, E.B. All Solution-Processed, Hybrid Light Emitting Field-Effect Transistors. Adv. Mater. 2014, 26, 6410–6415. [Google Scholar] [CrossRef] [PubMed]
- De Mello, J.C.; Wittmann, H.F.; Friend, R.H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 1997, 9, 230–232. [Google Scholar] [CrossRef]
- Heeger, A.J.; Sariciftci, N.S.; Namdas, E.B. Semiconducting and Metallic Polymers; Oxford Graduate Texts; OUP Oxford: Oxford, UK, 2010; ISBN 9780198528647. [Google Scholar]
- Nakanotani, H.; Saito, M.; Nakamura, H.; Adachi, C. Highly balanced ambipolar mobilities with intense electroluminescence in field-effect transistors based on organic single crystal oligo (p-phenylenevinylene) derivatives. Appl. Phys. Lett. 2009, 95, 197. [Google Scholar] [CrossRef]
- Ullah, M.; Lin, Y.; Muhieddine, K.; Lo, S.; Anthopoulos, T.D.; Namdas, E.B. Hybrid Light-Emitting Transistors Based on Low-Temperature Solution-Processed Metal Oxides and a Charge-Injecting Interlayer. Adv. Opt. Mater. 2016, 4, 231–237. [Google Scholar] [CrossRef]
- Chaudhry, M.U.; Muhieddine, K.; Wawrzinek, R.; Li, J.; Lo, S.-C.; Namdas, E.B. Nano-alignment in semiconducting polymer films: A path to achieve high current density and brightness in organic light emitting transistors. ACS Photonics 2018, 5, 2137–2144. [Google Scholar] [CrossRef]
- Kyaw, A.K.K.; Jamalullah, F.; Vaithieswari, L.; Tan, M.J.; Zhang, L.; Zhan, J. Thermally Stable and Sterilizable Polymer Transistors for Reusable Medical Devices. ACS Appl. Mater. Interfaces 2016, 8, 9533–9539. [Google Scholar] [CrossRef] [PubMed]
Hole Mobility | Current ON/OFF | EQE | Luminance |
---|---|---|---|
2.1 cm2 V−1 s−1 | >106 | 1.6% | 2600 cd m−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acar, G.; Iqbal, M.J.; Chaudhry, M.U. Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers. Materials 2021, 14, 901. https://doi.org/10.3390/ma14040901
Acar G, Iqbal MJ, Chaudhry MU. Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers. Materials. 2021; 14(4):901. https://doi.org/10.3390/ma14040901
Chicago/Turabian StyleAcar, Gizem, Muhammad Javaid Iqbal, and Mujeeb Ullah Chaudhry. 2021. "Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers" Materials 14, no. 4: 901. https://doi.org/10.3390/ma14040901
APA StyleAcar, G., Iqbal, M. J., & Chaudhry, M. U. (2021). Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers. Materials, 14(4), 901. https://doi.org/10.3390/ma14040901