Porous Alumina Films Fabricated by Reduced Temperature Sulfuric Acid Anodizing: Morphology, Composition and Volumetric Growth
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Reduced temperature 280 K electrochemical anodizing of aluminum at extremely low current density and high SA concentration leads to the formation of a non-typical nanostructured porous alumina film consisting of hemispheres with radially diverging pores. The nucleation of hemispheres on the sample surface under such conditions occurs pointwise and, probably, in an orderly manner, and is probably caused by self-organized redistribution of current density over the sample surface.
- The galvanostatic anodizing rate of aluminum foil in aqueous sulfuric acid solutions increases in proportion to the density of the anodic current.
- A decrease in sulfuric acid concentration from 2.0 to 0.4 M does not affect the anodizing rate significantly.
- The volumetric growth factor increases with an increase in current density from 0.5 to 10 mA·cm−2, which is caused by an increase in sulfuric acid anions embedded in the porous alumina film, a decrease in the anodizing time and, as a consequence, a decrease in the oxide dissolution rate. The volumetric growth factor decreases with an increase in the sulfuric acid concentration from 0.4 to 2.0 mA·cm−2, reaching values from 1.67 to 1.26, which can be explained by an increase in the oxide dissolution rate with an increase in SA concentration.
- The dependence of porous alumina film volumetric growth factor on the anodic current density is characterized by two saturation regions, the position of which depends on the electrolyte concentration, which are probably related to the sulfuric acid dibasicity and stepwise dissociation.
- An aluminum phase was identified in the porous alumina film samples. There is a tendency towards a decrease in the content of residual aluminum with an increase in the electrolyte concentration. The amount of un-oxidized metal has a maximum in the current density region of 4–4.5 mA·cm−2 for porous alumina films obtained in 0.4 and 1.0 M sulfuric acid and a monotonic increase with increase in the current density for porous alumina films obtained in 2.0 M sulfuric acid.
- The dependence on the current density for the efficiency of aluminum anodizing in sulfuric acid solutions has a maximum value above 100%, which is explained by the presence of residual metal in the porous alumina films, confirmed by the results of XRD and SEM.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72, 1173–1175. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, N.A.; Harlow, G.S.; Carlà, F.; Evertsson, J.; Rullik, L.; Linpé, W.; Felici, R.; Lundgren, E. Observation of Pore Growth and Self-Organization in Anodic Alumina by Time-Resolved X-ray Scattering. ACS Appl. Nano Mater. 2018, 1, 1265–1271. [Google Scholar] [CrossRef]
- Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770. [Google Scholar] [CrossRef]
- Zhou, J.; He, J.; Zhao, G.; Zhang, C.; Zhao, J.; Hu, H. Alumina nanostructures prepared by two-step anodization process. Trans. Nonferr. Met. Soc. China 2007, 17, 82–86. [Google Scholar] [CrossRef]
- Mozalev, A.; Smith, A.J.; Borodin, S.; Plihauka, A.; Hassel, A.W.; Sakairi, M.; Takahashi, H. Growth of multioxide planar film with the nanoscale inner structure via anodizing Al/Ta layers on Si. Electrochim. Acta 2009, 54, 935–945. [Google Scholar] [CrossRef]
- Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T. Square and Triangular Nanohole Array Architectures in Anodic Alumina. Adv. Mater. 2001, 13, 189–192. [Google Scholar] [CrossRef]
- Vaezi-Nejad, S.M. Primary investigation of anodized aluminium as a substrate for hybrid microelectronics. Int. J. Electron. 1990, 68, 59–68. [Google Scholar] [CrossRef]
- Vaezi-Nejad, S.M. Primary investigation of anodized aluminium as a substrate for hybrid microelectronics Part 2. Behaviour of thick film circuit components. Int. J. Electron. 1990, 69, 519–525. [Google Scholar] [CrossRef]
- Pligovka, A.N.; Luferov, A.N.; Nosik, R.F.; Mozalev, A.M. Dielectric characteristics of thin film capacitors based on anodized Al/Ta layers. In Proceedings of the KpbiMuKo 2010 CriMiCo—2010 20th International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings, Sevastopol, Ukraine, 13–17 September 2010; pp. 880–881. [Google Scholar] [CrossRef]
- Surganov, V.; Mozalev, A. Planar aluminum interconnection formed by electrochemical anodizing technique. Microelectron. Eng. 1997, 37–38, 329–334. [Google Scholar] [CrossRef]
- Pligovka, A.; Lazavenka, A.; Gorokh, G. Anodic Niobia Column-like 3-D Nanostructures for Semiconductor Devices. IEEE Trans. Nanotechnol. 2019, 18, 790–797. [Google Scholar] [CrossRef]
- Ling, Z.; Chen, S.; Wang, J.; Li, Y. Fabrication and properties of anodic alumina humidity sensor with through-hole structure. Chinese Sci. Bull. 2008, 53, 183–187. [Google Scholar] [CrossRef]
- Khatko, V.; Gorokh, G.; Mozalev, A.; Solovei, D.; Llobet, E.; Vilanova, X.; Correig, X. Tungsten trioxide sensing layers on highly ordered nanoporous alumina template. Sens. Actuators B Chem. 2006, 118, 255–262. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Kolesnik, I.V.; Evdokimov, P.V.; Skryabina, O.V.; Garshev, A.V.; Mironov, S.M.; Stolyarov, V.S.; Baranchikov, A.E.; Napolskii, K.S. Microhotplate catalytic sensors based on porous anodic alumina: Operando study of methane response hysteresis. Sens. Actuators B Chem. 2021, 330, 129307. [Google Scholar] [CrossRef]
- Mozalev, A.; Baccar, H.; Abdelghani, A. Preparation and Biosensing Performance of Porous-alumina-Assisted Gold Nanostructures on Substrates. Procedia Eng. 2016, 168, 1188–1191. [Google Scholar] [CrossRef]
- Toccafondi, C.; Dante, S.; Reverberi, A.P.; Salerno, M. Biomedical Applications of Anodic Porous Alumina. Curr. Nanosci. 2015, 11, 572–580. [Google Scholar] [CrossRef]
- Schlottig, F.; Textor, M.; Spencer, N.D.; Sekinger, K.; Schnaut, U.; Paulet, J.-F. Characterization of nanoscale metal structures obtained by template synthesis. Fresenius. J. Anal. Chem. 1998, 361, 684–686. [Google Scholar] [CrossRef]
- Shi, G.; Mo, C.M.; Cai, W.L.; Zhang, L.D. Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pore arrays. Solid Stat. Commun. 2000, 115, 253–256. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Y.; Dong, J.; Gui, L.; Tang, Y. Electrodeposited Metal Sulfide Semiconductor Films with Ordered Nanohole Array Structures. Langmuir 2001, 17, 3635–3638. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Molchan, I.S.; Thompson, G.E.; Skeldon, P.; Pakes, A.; Kudrawiec, R.; Bryja, L.; Misiewicz, J. Photoluminescence of Eu-doped titania xerogel spin-on deposited on porous anodic alumina. Sens. Actuators A Phys. 2002, 99, 71–73. [Google Scholar] [CrossRef]
- Xu, H.; Qin, D.-H.; Yang, Z.; Li, H.-L. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater. Chem. Phys. 2003, 80, 524–528. [Google Scholar] [CrossRef]
- Chen, Z.; Lei, Y.; Chew, H.G.; Teo, L.W.; Choi, W.K.; Chim, W.K. Synthesis of germanium nanodots on silicon using an anodic alumina membrane mask. J. Cryst. Growth 2004, 268, 560–563. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, F.; Chen, Y.; Liu, J.; Sun, Y.; Luo, T.; Li, M.; Liu, J. A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sens. Actuators B Chem. 2009, 142, 204–209. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.-J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Białek, E.; Włodarski, M.; Norek, M. Influence of Anodization Temperature on Geometrical and Optical Properties of Porous. Materials (Basel) 2020, 13, 3185. [Google Scholar] [CrossRef]
- Napolskii, K.S.; Noyan, A.A.; Kushnir, S.E. Control of high-order photonic band gaps in one-dimensional anodic alumina photonic crystals. Opt. Mater. Amst. 2020, 109, 110317. [Google Scholar] [CrossRef]
- Sacco, L.; Florea, I.; Chatelet, M.; Cojocaru, C.-S. Electrical and morphological behavior of carbon nanotubes synthesized within porous anodic alumina templates. J. Phys. Mater. 2018, 1, 015004. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.T.; Hang, Q.; Franklin, A.D.; Janes, D.B.; Sands, T.D. Highly ordered diamond and hybrid triangle-diamond patterns in porous anodic alumina thin films. Appl. Phys. Lett. 2008, 93, 043108. [Google Scholar] [CrossRef] [Green Version]
- Zhan, H.; Garrett, D.; Apollo, N.V.; Ganesan, K.; Lau, D.; Prawer, S.; Cervenka, J. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition. Sci. Rep. 2016, 6, 19822. [Google Scholar] [CrossRef]
- Diggle, J.; Downie, T.; Goulding, C. Anodic Oxide Films on Aluminum. Chem. Rev. 1969, 69, 365–405. [Google Scholar] [CrossRef]
- Wood, G.C. Book Chapter. In Oxides and Oxide Films; Diggle, J., Ed.; Marcel Dekker: New York, NY, USA, 1973; pp. 167–279. [Google Scholar]
- Sui, Y.C.; Cui, B.Z.; Martínez, L.; Perez, R.; Sellmyer, D.J. Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film. Thin Solid Films 2002, 406, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Tajima, S. Anodic Oxidation of Aluminum BT. In Advances in Corrosion Science and Technology; Fontana, M.G., Staehle, R.W., Eds.; Springer: Boston, MA, USA, 1970; Volume 1, pp. 229–362. ISBN 978-1-4615-8252-6. [Google Scholar]
- Zhou, F.; Al-Zenati, A.K.M.; Baron-Wiechec, A.; Curioni, M.; Garcia-Vergara, S.J.; Habazaki, H.; Skeldon, P.; Thompson, G.E. Volume Expansion Factor and Growth Efficiency of Anodic Alumina Formed in Sulphuric Acid. J. Electrochem. Soc. 2011, 158, C202. [Google Scholar] [CrossRef]
- Huang, X.; Su, W.; Sun, L.; Liu, J.; Sasinovich, D.A.; Kupreeva, O.V.; Tsirkunov, D.A.; Rabatuev, G.G.; Lazarouk, S.K. Effect of anodic voltage on parameters of porous alumina formed in sulfuric acid electrolytes. Mater. Phys. Mech. 2019, 41, 62–68. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Koshkodaev, D.S.; Lebedev, V.A.; Napolskii, K.S. Porous Anodic Alumina Films Grown on Al(111) Single Crystals. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2019, 13, 955–961. [Google Scholar] [CrossRef]
- Thompson, G.E.; Wood, G.C. Anodic Films on Aluminium. In Treatise on Materials Science and Technology—Corrosion: Aqueous Processes and Passive Films; Scully, J.C., Ed.; Academic Press: Cambridge, MA, USA, 1983; Volume 23, pp. 205–329. [Google Scholar]
- Young, L. Anodic Oxide Films; Academic Press: New York, NY, USA, 1961. [Google Scholar]
- Girginov, A.A.; Zahariev, A.S.; Machkova, M.S. Kinetics of formation of complex anodic oxide films on aluminium. Mater. Chem. Phys. 2002, 76, 274–278. [Google Scholar] [CrossRef]
- Vrublevsky, I.; Parkoun, V.; Sokol, V.; Schreckenbach, J.; Marx, G. The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci. 2004, 222, 215–225. [Google Scholar] [CrossRef]
- Arurault, L. Pilling–Bedworth ratio of thick anodic aluminium porous films prepared at high voltages in H2SO4 based electrolyte. Trans. IMF 2008, 86, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Stępniowski, W.J.; Moneta, M.; Norek, M.; Michalska-Domańska, M.; Scarpellini, A.; Salerno, M. The influence of electrolyte composition on the growth of nanoporous anodic alumina. Electrochim. Acta 2016, 211, 453–460. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hashimoto, H.; Asoh, H. Formation Efficiency of Anodic Porous Alumina in Sulfuric Acid Containing Alcohol: Comparison of the Effects of Monohydric and Polyhydric Alcohols as Additives Formation Ef fi ciency of Anodic Porous Alumina in Sulfuric Acid Containing Alcohol: Comparison of the Effects of Monohydric and Polyhydric Alcohols as Additives. J. Electrochem. Soc. 2020, 167, 041504. [Google Scholar] [CrossRef]
- Knörnschild, G.; Poznyak, A.A.; Karoza, A.G.; Mozalev, A. Effect of the anodization conditions on the growth and volume expansion of porous alumina films in malonic acid electrolyte. Surf. Coat. Technol. 2015, 275, 17–25. [Google Scholar] [CrossRef]
- Kleschenko, I.V.; Rezvanova, M.O.; Poznyak, A.A. Peculiarity of Aluminium Anodization in Sulphosalicylic Acid Solutions. In Proceedings of the 2006 16th International Crimean Microwave and Telecommunication Technology, Sevastopol, Ukraine, 11–15 September 2006; Volume 2, pp. 675–676. [Google Scholar] [CrossRef]
- Golovataya, S.V.; Mozalev, A.M.; Poznyak, A.A. Peculiarity of Aluminium Anodization in Malonic Acid Solution. In Proceedings of the 2006 16th International Crimean Microwave and Telecommunication Technology, Sevastopol, Ukraine, 11–15 September 2006; Volume 2, pp. 606–607. [Google Scholar] [CrossRef]
- Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Y.; Buda, M.; Chupakhina, E.A. Structural study of anodic films formed on aluminum in nitric acid electrolyte. Thin Solid Films 2002, 416, 16–23. [Google Scholar] [CrossRef]
- Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Y.; Chupakhina, E.A. Structure and Properties of Anodic Aluminum Oxide Films Produced in HNO3 Solutions. Inorg. Mater. 2003, 39, 50–56. [Google Scholar] [CrossRef]
- Patra, N.; Salerno, M.; Losso, R.; Cingolani, R. Use of unconventional organic acids as anodization electrolytes for fabrication of porous alumina. In Proceedings of the 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), Genoa, Italy, 26–30 July 2009; pp. 567–570. [Google Scholar]
- Gordeeva, E.O.; Roslyakov, I.V.; Napolskii, K.S. Aluminium anodizing in selenic acid: Electrochemical behaviour, porous structure, and ordering regimes. Electrochim. Acta 2019, 307, 13–19. [Google Scholar] [CrossRef]
- Huang, H.; Qiu, J.; Wei, X.; Sakai, E.; Jiang, G.; Wu, H.; Komiyama, T. Ultra-fast fabrication of porous alumina film with excellent wear and corrosion resistance via hard anodizing in etidronic acid. Surf. Coatings Technol. 2020, 393, 125767. [Google Scholar] [CrossRef]
- Vrublevsky, I.; Parkoun, V.; Schreckenbach, J.; Marx, G. Study of porous oxide film growth on aluminum in oxalic acid using a re-anodizing technique. Appl. Surf. Sci. 2004, 227, 282–292. [Google Scholar] [CrossRef]
- Vrublevsky, I.; Parkoun, V.; Schreckenbach, J.; Marx, G. Effect of the current density on the volume expansion of the deposited thin films of aluminum during porous oxide formation. Appl. Surf. Sci. 2003, 220, 51–59. [Google Scholar] [CrossRef]
- Surganov, V.F.; Mozalev, A.M.; Mozaleva, I.I. Volume growth of anodic oxide and rate of electrochemical anodizing in oxalate electrolyte. Russ. J. Appl. Chem. 1995, 68, 1429–1433. [Google Scholar]
- Surganov, V.F.; Gorokh, G.G. Volume Growth of the Oxide Al2O3 During the Anodizing of Aluminium in Oxalic-Acid Solutions. Prot. Met. Engl. Transl. Zaschita Met. 1987, 23, 512–515. [Google Scholar]
- Surganov, V.F.; Mozalev, A.M.; Mozaleva, I.I. Rate of electrochemical aluminum anodizing and volume growth of anode oxide in orthophosphoric acid solutions. Russ. J. Appl. Chem. 1997, 70, 254–259. [Google Scholar]
- Mozalev, A.M.; Mozaleva, I.I.; Posnjak, A.A. The formation of porous oxide films in the circumstances of self-localisation of the ionic current during galvanostatic aluminium anodising in phosphoric acid solutions. Dokl. BGUIR 2006, 2, 127–133. [Google Scholar]
- Gordeeva, E.O.; Roslyakov, I.V.; Sadykov, A.I.; Suchkova, T.A.; Petukhov, D.I.; Shatalova, T.B.; Napolskii, K.S. Formation Efficiency of Porous Oxide Films in Aluminum Anodizing. Russ. J. Electrochem. 2018, 54, 990–998. [Google Scholar] [CrossRef]
- Surganov, V.F.; Gorokh, G.G. Anodic oxide cellular structure formation on aluminum films in tartaric acid electrolyte. Mater. Lett. 1993, 17, 121–124. [Google Scholar] [CrossRef]
- Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gösele, U. Self-ordering Regimes of Porous Alumina: The 10 Porosity Rule. Nano Lett. 2002, 2, 677–680. [Google Scholar] [CrossRef]
- Wood, G.C.; O’Sullivan, J.P. The anodizing of aluminum in sulfate solutions. Electrochim. Acta 1970, 15, 1865–1868. [Google Scholar] [CrossRef]
- Bailey, G.; Wood, G.C. The morphology of anodic films formed on aluminium in oxalic acid. Trans. Inst. Metal Finish. 1974, 52, 187–199. [Google Scholar] [CrossRef]
- O’Sullivan, J.P.; Wood, G.C. The morphology and the mechanism of formation of porous anodic films an aluminium. Proc. R. Soc. A 1970, 317, 511–543. [Google Scholar] [CrossRef]
- Poznyak, A.; Pligovka, A.; Turavets, U.; Norek, M. On-Aluminum and Barrier Anodic Oxide: Meeting Various Acids and Solutions. Coatings 2020, 10, 875. [Google Scholar] [CrossRef]
- Mozalev, A.; Poznyak, A.; Mozaleva, I.; Hassel, A.W. The voltage-time behaviour for porous anodizing of aluminium in a fluoride-containing oxalic acid electrolyte. Electrochem. Commun. 2001, 3, 299–305. [Google Scholar] [CrossRef]
- Chernyakova, K.; Tzaneva, B.; Vrublevsky, I.; Videkov, V. Effect of Aluminum Anode Temperature on Growth Rate and Structure of Nanoporous Anodic Alumina. J. Electrochem. Soc. 2020, 167, 103506. [Google Scholar] [CrossRef]
- Thompson, G.E.; Wood, G.C. Porous anodic film formation on aluminium. Nature 1981, 290, 230–232. [Google Scholar] [CrossRef]
- Thompson, G.E.; Furneaux, R.C.; Wood, G.C.; Richardson, J.A.; Goodie, J.S. Nucleation and growth of porous anodic films on aluminium. Nature 1978, 272, 433–435. [Google Scholar] [CrossRef]
- International Centre For Diffraction Data. Available online: https://www.icdd.com/pdf-4 (accessed on 5 December 2020).
- Gaponenko, N.V.; Unuchak, D.M.; Mudryi, A.V.; Malyarevich, G.K.; Gusev, O.B.; Stepikhova, M.V.; Krasilnikova, L.V.; Stupak, A.P.; Kleshcheva, S.M.; Samoilovich, M.I.; et al. Modification of erbium photoluminescence excitation spectra for the emission wavelength 1.54 μm in mesoscopic structures. J. Lumin. 2006, 121, 217–221. [Google Scholar] [CrossRef]
- Shawaqfeh, A.T.; Baltus, R.E. Fabrication and characterization of single layer and multi-layer anodic alumina membranes. J. Memb. Sci. 1999, 157, 147–158. [Google Scholar] [CrossRef]
- Saito, M.; Shiga, Y.; Miyagi, M.; Wada, K.; Ono, S. Optical Transmittance of Anodically Oxidized Aluminum Alloy. Jpn. J. Appl. Phys. 1995, 34, 3134–3138. [Google Scholar] [CrossRef]
Equation Used | Fitting Results | Sulfuric Acid Concentration (M) | ||
---|---|---|---|---|
0.4 | 1.0 | 2.0 | ||
5 | a (s) | −1.99 × 105 ± 9.61 × 104 | −1.68 × 105 ± 5.16 × 104 | −1.42 × 105 ± 3.06 × 104 |
b (cm2 mA−1) | 13.2 ± 6.1 | 11.0 ± 3.2 | 9.38 ± 1.88 | |
R2 | 0.99423 | 0.99647 | 0.99628 | |
6 | A (μm s−1) | 3.76 × 10−5 ± 1.18 × 10−4 | −3.36 × 10−4 ± 1.93 × 10−4 | −3.59 × 10−6 ± 1.11 × 10−4 |
B (1011 μm3 C−1) | 6.08 × 10−4 ± 1.04 × 10−4 | 9.63 × 10−4 ± 1.72 × 10−4 | 6.24 × 10−4 ± 8.20 × 10−5 | |
C ( ) | 1.07 ± 9.18 × 10−2 | 0.83 ± 7.58 × 10−2 | 1.05 ± 5.37 × 10−2 | |
R2 | 1 | 1 | 1 | |
7 | α (V) | 19.3 ± 1.7 | 14.4 ± 1.3 | 7.02 ± 1.36 |
β (V) | 4.49 ± 1.07 | 4.47 ± 0.70 | 5.77 ± 0.60 | |
γ (mA·cm−2) | −0.547 ± 0.292 | −0.358 ± 0.266 | 0.085 ± 0.237 | |
R2 | 0.99918 | 0.99906 | 0.99876 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poznyak, A.; Pligovka, A.; Laryn, T.; Salerno, M. Porous Alumina Films Fabricated by Reduced Temperature Sulfuric Acid Anodizing: Morphology, Composition and Volumetric Growth. Materials 2021, 14, 767. https://doi.org/10.3390/ma14040767
Poznyak A, Pligovka A, Laryn T, Salerno M. Porous Alumina Films Fabricated by Reduced Temperature Sulfuric Acid Anodizing: Morphology, Composition and Volumetric Growth. Materials. 2021; 14(4):767. https://doi.org/10.3390/ma14040767
Chicago/Turabian StylePoznyak, Alexander, Andrei Pligovka, Tsimafei Laryn, and Marco Salerno. 2021. "Porous Alumina Films Fabricated by Reduced Temperature Sulfuric Acid Anodizing: Morphology, Composition and Volumetric Growth" Materials 14, no. 4: 767. https://doi.org/10.3390/ma14040767
APA StylePoznyak, A., Pligovka, A., Laryn, T., & Salerno, M. (2021). Porous Alumina Films Fabricated by Reduced Temperature Sulfuric Acid Anodizing: Morphology, Composition and Volumetric Growth. Materials, 14(4), 767. https://doi.org/10.3390/ma14040767