Structural, Optical and Electrical Properties of Al+MoO3 and Au+MoO3 Thin Films Prepared by Magnetron Codeposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Properties of the Films
3.1.1. Nanoparticle Formation and Size—Arrangement Properties
3.1.2. Nanoparticle Internal Structure—Crystalline Properties
3.2. Optical Properties of the Films
3.3. Electrical Properties of the Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouzidi, A.; Benramdane, N.; Tabet-Derraz, H.; Mathieu, C.; Khelifa, B.; Desfeux, R. Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique. Mater. Sci. Eng. B 2003, 97, 5–8. [Google Scholar] [CrossRef]
- Prasad, A.K.; Kubinski, D.J.; Gouma, P.I. Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sens. Actuators B Chem. 2003, 93, 25–30. [Google Scholar] [CrossRef]
- Ijeh, R.O.; Nwanya, A.C.; Nkele, A.C.; Madiba, I.G.; Bashir, A.K.H.; Ekwealor, A.B.C.; Osuji, R.U.; Ezema, M.M.F. Optical, electrical and magnetic properties of copper doped electrodeposited MoO3 thin films. Ceram. Int. 2020, 46, 10820–10828. [Google Scholar] [CrossRef]
- Li, W.; Cheng, F.; Tao, Z.; Chen, J. Vapor-Transportation Preparation and Reversible Lithium Intercalation/Deintercalation of -MoO3 Microrods. J. Phys. Chem. B 2006, 110, 119–124. [Google Scholar] [CrossRef]
- Wang, B.; Ang, E.H.; Yang, Y.; Zhang, Y.; Geng, H.; Ye, M.; Li, C.C. Interlayer Engineering of Molybdenum Trioxide toward High-Capacity and Stable Sodium Ion Half/Full Batteries. Adv. Funct. Mater. 2020, 30, 2001708–2001718. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Q.; Yana, X.H.; Wang, J.J.; Wang, D.F.; Yuan, X.X.; Jiang, H.; Zhu, Y.H.; Cheng, X.N. A facile route to synthesize Ag decorated MoO3 nanocomposite for symmetric supercapacitor. Ceram. Int. 2020, 46, 15385–15391. [Google Scholar] [CrossRef]
- Shi, L.; Song, J.; Zhang, Y.; Li, G.; Wang, W.; Hao, Y.; Wu, Y.; Cui, Y. High performance flexible organic photomultiplication photodetector based on ultra-thin silver lm transparent electrode. Nanotechnology 2020, 31, 314001. [Google Scholar] [CrossRef]
- Kim, S.H.; Jang, K.; Kang, P.W.; Ahn, J.-P.; Seol, J.B.; Kwak, C.M.; Hatzoglou, C.; Vurpillot, F.; Choi, P.P. Characterization of Pd and Pd@Au core-shell nanoparticles using atom probe tomography and field evaporation simulation. J. Alloy Compd. 2020, 831, 154721. [Google Scholar] [CrossRef]
- Huo, N.; Kang, J.; Wei, Z.; Li, S.S.; Li, J.; Wei, S.H. Novel and enhanced opto-electronicperformances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025–7031. [Google Scholar] [CrossRef]
- Saroja, A.P.V.K.; Muthusamy, K.; Sundara, R. Core-Shell Cathode Design with Molybdenum trioxide as Electrocatalytic Trap-ping layer for High Energy Density Room Temperature Sodium Sulfur Bat-tery. J. Phys. Chem. C 2020, 124, 7615–7623. [Google Scholar] [CrossRef]
- Vasanth, A.; Nair, S.V.; Shanmugam, M. Microwave Engineered Structural, Nanomorphological and Photo-responsive Characteristics in 2D-Layered Dual-Phase MoO3-MoSe2 Films. Appl. Surf. Sci. 2020, 519, 146263–146272. [Google Scholar] [CrossRef]
- Naresh, N.; Jena, P.; Satyanarayana, N. Facile synthesis of MoO3/rGO nanocomposite as anode materials for high performance lithium-ion bat-tery applications. J. Alloy Compd. 2019, 810, 151920. [Google Scholar] [CrossRef]
- Zhang, K.; Kotadiya, N.B.; Wang, X.Y.; Wetzelaer, G.-J.A.H.; Marsza-lek, T.; Pisula, W.; Blom, P.W.M. Interlayers for Improved Hole Injection in Organic Field-Effect Transistors. Adv. Electron. Mater. 2020, 6, 1901352. [Google Scholar] [CrossRef]
- Davis, B.A.; Chakrabortyb, B.; Kalarikkala, N.; Ramaniahb, L.M. Room temperature ferromagnetism in carbon doped MoO3 for spintronic applications: A DFT study. J. Magn. Magn. Mater. 2020, 502, 166503. [Google Scholar] [CrossRef]
- Rajendran, R.; Shrestha, L.K.; Minami, K.; Subramanian, M.; Jayavel, R.; Ariga, K. Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocompo-sites with electrochemical performance. J. Mater. Chem. A 2014, 2, 18480–18487. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, J.; Wang, L.; Lv, Y.; Fan, Y.H.Y.; Guo, X.; Zhao, J.; Wangd, Y.; Liu, X. High performance, top-emitting, quantum dot light-emitting diodes with all solution-processed functional layers. J. Mater. Chem. C 2017, 5, 9138. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Melanko, J.B.; Pearce, M.E.; Salem, A.K. Nanotubes, nanorods, nanobers, and fullerenes for nanoscale drug delivery. In Nanotechnology Drug Deliver; Springer: New York, NY, USA, 2009; pp. 105–127. [Google Scholar]
- Guan, G.; Han, M.Y. Functionalized Hybridization of 2D Nanomate-rials. Adv. Sci. 2019, 6, 1901837. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Basioli, L.; Tkalcević, M.; Bogdanović-Radović, I.; Drazić, G.; Nadazdy, P.; Šilović, P.; Salamon, K.; Mičetić, M. 3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix. Nanomaterials 2020, 10, 1363. [Google Scholar] [CrossRef]
- Nekić, N.; Sarić, I.; Salamon, K.; Basioli, L.; Sancho-Parramon, J.; Grenzer, J.; Hubner, R.; Bernstorff, S.; Petravič, M.; Mičetić, M. Preparation of non-oxidized Ge quantum dot lattices in amorphous Al2O3, Si3N4 and SiC matrices. Nanotechnology 2019, 30, 335601. [Google Scholar] [CrossRef]
- Bernstorff, S.; Holy, V.; Endres, J.; Vales, V.; Sobota, J.; Siketić, Z.; Bogdanović-Radović, I.; Buljan, M.; Drazić, G. Co nanocrystals in amorphous multilayers—A structure study. J. Appl. Cryst. 2013, 46, 1711–1721. [Google Scholar] [CrossRef]
- Asaduzzaman, A.M.; Springborg, M. Structural and electronic properties of Si/Ge nanoparticle. Phys. Rev. B 2006, 74, 165406. [Google Scholar] [CrossRef][Green Version]
- Buljan, M.; Radić, N.; Sancho-Paramon, J.; Janicki, V.; Grenzer, J.; Bogdanović-Radović, I.; Siketić, Z.; Ivanda, M.; Utrobičić, A.; Hubner, R.; et al. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix. Nanotechnology 2015, 26, 065602. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nekić, N.; Sancho-Paramon, J.; Bogdanović-Radović, I.; Grenzer, J.; Hubner, R.; Bernstorff, S.; Ivanda, M.; Buljan, M. Ge/Si core/shell quantum dots in alumina: Tuning the optical absorption by the core and shell size. Nanophotonics 2017, 6, 1055–1062. [Google Scholar] [CrossRef][Green Version]
- Ray, N.; Gupta, N.; Adhikary, M.; Nekić, N.; Basioli, L.; Drazić, G.; Bernstorff, S.; Mičetić, M. Influence of Structure on Electronic Charge Transport in 3D Ge Nanowire Networks in an Alumina Matrix. Sci. Rep. 2019, 9, 5432. [Google Scholar] [CrossRef][Green Version]
- Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 2012, 85, 101–113. [Google Scholar] [CrossRef]
- Lim, Z.Z.J.; Li, J.E.J.; Ng, C.T.; Yung, L.Y.L.; Bay, B.H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin. 2011, 32, 983–990. [Google Scholar] [CrossRef][Green Version]
- Priyadarshinia, E.; Pradhanab, N. Gold nanoparticles as effcient sensors in colorimetric detection of toxic metal ions: A review. Sens. Act. B Chem. 2017, 238, 888–902. [Google Scholar] [CrossRef]
- Borges, M.; Buljan, J.; Sancho-Parramon, J.; Bogdanović-Radović, I.; Siketić, Z.; Scherer, T.; Kubel, C.; Bernstorff, S.; Cavaleiro, A.; Vaz, F.; et al. Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature. J. Nanopart. Res. 2014, 16, 2790–2796. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iati, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Cond. Mat. 2017, 29, 203002–203040. [Google Scholar] [CrossRef] [PubMed]
- Sukee, A.; Kantarak, E.; Singjai, P. Preparation of Aluminum doped Zinc Oxide Thin Films on Glass Substrate by Sparking Process and Their Optical and Electrical Properties. IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 901, 012153. [Google Scholar] [CrossRef]
- Pan, H.; Zuo, L.; Fan, W.C.; Andreasen, B.; Jiang, X.; Norrm, K.; Krebs, F.C.; Chen, H. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells. Org. Electron. 2013, 14, 797–803. [Google Scholar] [CrossRef]
- Van der Pauw, L.J. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 1958, 26, 220–224. [Google Scholar]
- Buljan, M.; Radić, N.; Bernstorff, S.; Drazić, G.; Bogdanović-Radović, I.; Holy, V. Grazing-incidence small-angle X-ray scattering: Application to the study of quantum dot lattices. Acta Cryst. A 2012, 68, 124–138. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Buljan, M.; Desnica, U.V.; Ivanda, M.; Radić, N.; Dubček, P.; Drazić, G.; Salamon, K.; Bernstorff, S.; Holy, V. Formation of three-dimensional quantum-dot superlattices in amorphous systems: Experiments and Monte Carlo simulations. Phys. Rev. B 2009, 79, 035310. [Google Scholar] [CrossRef]
- Vos, M.; Macco, B.; Thissen, N.F.W.; Bol, A.A.; Kessels, W.M.M. Atomic layer deposition of molybdenum oxide from (NtBu)2(NMe2)2Mo and O2 plasma. J. Vac. Sci. Technol. A 2016, 34, 01A103. [Google Scholar]
- de Melo, O.; González, Y.; Climent-Font, A.; Galán, P.; Ruediger, A.; Sánchez, M.; Calvo-Mola, C.; Santana, G.; Torres-Costa, V. Optical and electrical properties of MoO2 and MoO3 thin films prepared from the chemically driven isothermal close space vapor transport technique. J. Phys. Condens. Matter 2019, 31, 295703. [Google Scholar] [CrossRef]
- Malitson, H.; Dodge, M.J. Refractive Index and Birefringence of Synthetic Sapphire. J. Opt. Soc. Am. 1972, 62, 1405. [Google Scholar]
- Farooq, S.; de Araujo, R.E. Engineering a Localized Surface Plasmon Resonance Platform for Molecular Biosensing. Open J. Appl. Sci. 2018, 8, 126–139. [Google Scholar] [CrossRef][Green Version]
- Subbarayudu, S.; Reddy, K.V.S.; Uthanna, S. Sputtering pressure influenced structural, electrical andoptical properties of RF magnetron sputtered MoO3 films. Mater. Sci. 2000, 38, 41–47. [Google Scholar]
- Car, T.; Santić, A.; Ray, N.; Nekić, N.; Salamon, K.; Bernstorff, S.; Buljan, M. Annealing induced semiconductor-metal transition in Ge+ITO film. Appl. Phys. Lett. 2017, 111, 172104. [Google Scholar] [CrossRef]
- Tackeuchi, A.; Kuroda, T.; Mase, K. Dynamics of carrier tunneling between vertically aligned double quantum dots. Phys. Rev. B 2000, 62, 1568–1571. [Google Scholar] [CrossRef]
- Sinha, A.R.; Roychoudhury, Y.P. Varshni, Wentzel-Kramers-Brillouin quantization rules for two-dimensional quantum dots. Phys. B 2003, 325, 214–223. [Google Scholar] [CrossRef]
Sample/Par | PAu/Al (W) | PAu/Al (W/cm2) | P MoO3 (W) | P MoO3 (W/cm2) | d (nm) | Au/Al to MoO3 Volume Ratio |
---|---|---|---|---|---|---|
Au1 | 6 | 0.132 | 150 | 3.289 | 29.4 | 0.10 |
Au2 | 6 | 0.132 | 100 | 2.193 | 20.6 | 0.15 |
Au3 | 6 | 0.132 | 75 | 1.644 | 16.0 | 0.20 |
Al1 | 10 | 0.219 | 150 | 3.289 | 26.5 | 0.10 |
Al2 | 10 | 0.219 | 100 | 2.193 | 16.3 | 0.15 |
Al3 | 10 | 0.219 | 75 | 1.644 | 13.2 | 0.20 |
Sample/Par. | a | c | σ1,2x,y | σ1,2z | σ3x,y | σ3z | RL | RV | σR |
---|---|---|---|---|---|---|---|---|---|
Au1 | 3.3 | 2.0 | 1.1 | 0.8 | 1.9 | 0.7 | 0.8 | 0.9 | 0.1 |
Au2 | 3.7 | 3.1 | 1.4 | 1.3 | 1.5 | 0.8 | 1.0 | 1.2 | 0.2 |
Au3 | 4.5 | 3.6 | 1.8 | 0.9 | 2.1 | 1.2 | 1.5 | 1.7 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Car, T.; Jakovac, I.; Šarić, I.; Bernstorff, S.; Micetic, M. Structural, Optical and Electrical Properties of Al+MoO3 and Au+MoO3 Thin Films Prepared by Magnetron Codeposition. Materials 2021, 14, 766. https://doi.org/10.3390/ma14040766
Car T, Jakovac I, Šarić I, Bernstorff S, Micetic M. Structural, Optical and Electrical Properties of Al+MoO3 and Au+MoO3 Thin Films Prepared by Magnetron Codeposition. Materials. 2021; 14(4):766. https://doi.org/10.3390/ma14040766
Chicago/Turabian StyleCar, Tihomir, Ivan Jakovac, Ivana Šarić, Sigrid Bernstorff, and Maja Micetic. 2021. "Structural, Optical and Electrical Properties of Al+MoO3 and Au+MoO3 Thin Films Prepared by Magnetron Codeposition" Materials 14, no. 4: 766. https://doi.org/10.3390/ma14040766