Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Preparation of TiO2 Nanotube Arrays
2.3. Electrochemical Analysis of Li/TiO2 Cells
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Kumar, S.; Muscetta, M.; Padmanabhan, N.T.; Clarizia, L.; Akande, A.; Hinder, S.; Mathew, S.; John, H.; Breen, A.; et al. New insights into the efficient charge transfer of ternary chalcogenides composites of TiO2. Appl. Catal. B 2021, 282, 119612. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.L.; Aitola, K.; Lund, P.D. TiO2 nanotubes for dye-sensitized solar cells-A review. Energy Sci. Eng. 2020, 1–17. [Google Scholar] [CrossRef]
- Rousseau, R.; Glezakou, V.A.; Selloni, A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 2020, 5, 460–475. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Li, H.; Sagar, V. TiO2-Based water-tolerant acid catalysis for biomass-based fuels and chemicals. ACS Catal. 2020, 10, 9555–9584. [Google Scholar] [CrossRef]
- Zayat, M.; Garcai-Parejo, P.; Levy, D. Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem. Soc. Rev. 2007, 36, 1270–1281. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, X.H.; Ma, Y.H.; Cho, H.S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554. [Google Scholar] [CrossRef]
- Gao, B.; Sun, M.X.; Ding, W.; Ding, Z.P.; Liu, W.Z. Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties. Appl. Catal. B 2021, 281, 119492. [Google Scholar] [CrossRef]
- Gao, J.Q.; Shen, Q.Q.; Guan, R.F.; Xue, J.B.; Liu, X.G.; Jia, H.S.; Li, Q.; Wu, Y.C. Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. J. CO2 Util. 2020, 35, 205–215. [Google Scholar] [CrossRef]
- Vazquez-Galvan, J.; Flox, C.; Jervis, J.R.; Jorge, A.B.; Shearing, P.R.; Morante, J.R. High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries. Carbon 2019, 148, 91–104. [Google Scholar] [CrossRef]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Andronic, L.; Enesca, A. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications. Front. Chem. 2020, 8, 565489. [Google Scholar] [CrossRef]
- Tsuchiyaa, H.; Schmuki, P. Less known facts and findings about TiO2 nanotubes. Nanoscale 2020, 12, 8119–8132. [Google Scholar] [CrossRef]
- Wu, C.W.; Ohsuna, T.; Kuwabara, M.; Kuroda, K. Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation. J. Am. Chem. Soc. 2006, 128, 4544–4545. [Google Scholar] [CrossRef]
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307–1311. [Google Scholar] [CrossRef]
- Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191–195. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Bai, X.J.; Hao, P.; Guo, Y.C.; Xue, Y.J.; Tian, J.; Cui, H.Z. Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes. Appl. Catal. B 2019, 243, 711–720. [Google Scholar] [CrossRef]
- Ni, J.F.; Fu, S.D.; Yuan, Y.F.; Ma, L.; Jiang, Y.; Li, L.; Lu, J. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 2018, 30, 1704337. [Google Scholar] [CrossRef]
- Raja, K.S.; Misra, M.; Paramguru, K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim. Acta 2005, 51, 154–165. [Google Scholar] [CrossRef]
- Macak, J.M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005, 44, 2100–2102. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463–7465. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Janczarek, M.; Wei, Z.S.; Raja-Mogan, T.; Endo-Kimura, M.; Khedr, T.M.; Ohtani, B.; Kowalska, E. Morphology- and crystalline composition-governed activity of titania-based photocatalysts: Overview and perspective. Catalysts 2019, 9, 1054. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Klekiel, T.; Krasicka-Cydzik, E. Fluoride concentration effect on the anodic growth of self-aligned oxide nanotube array on Ti6Al7Nb alloy. Surf. Interface Anal. 2010, 42, 510–514. [Google Scholar] [CrossRef]
- Huang, W.Q.; Xu, H.Q.; Ying, Z.R.; Dan, Y.X.; Zhou, Q.Y.; Zhang, J.J.; Zhu, X.F. Split TiO2 nanotubes-Evidence of oxygen evolution during Ti anodization. Electrochem. Commun. 2019, 106, 106532. [Google Scholar] [CrossRef]
- Rao, B.M.; Torabi, A.; Varghese, O.K. Anodically grown functional oxide nanotubes and applications. MRS Commun. 2016, 6, 375–396. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Schmuki, P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta 2006, 52, 1258–1264. [Google Scholar] [CrossRef]
- Jiang, Y.; Hall, C.; Burr, P.A.; Song, N.; Lau, D.; Yuwono, J.; Wang, D.W.; Ouyang, Z.; Lennon, A. Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. J. Power Sources 2020, 463, 228205. [Google Scholar] [CrossRef]
- Sugiawati, V.; Vacandio, F.; Galeyeva, A.; Kurbatov, A.; Djenizian, T. Enhanced electrochemical performance of electropolymerized self-organized TiO2 nanotubes fabricated by anodization of Ti grid. Front. Phys. 2019, 7, 179. [Google Scholar] [CrossRef]
- Pham, T.N.; Park, D.; Lee, Y.; Kim, T.; Hur, J.; Oh, Y.K.; Lee, Y.C. Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion batteries and faradaic supercapacitors. J. Energy Chem. 2019, 38, 119–146. [Google Scholar] [CrossRef]
- Yi, Z.; Zeng, Y.; Wu, H.; Chen, X.F.; Fan, Y.X.; Yang, H.; Tang, Y.J.; Yi, Y.G.; Wang, J.Q.; Wu, P.H. Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters. Results Phys. 2019, 15, 102609. [Google Scholar] [CrossRef]
- Albu, S.P.; Schmuki, P. Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochim. Acta 2013, 91, 90–95. [Google Scholar] [CrossRef]
- Jennings, J.R.; Ghicov, A.; Peter, L.M.; Schmuki, P.; Walker, A.B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 2008, 130, 13364–13372. [Google Scholar] [CrossRef]
- Su, Z.; Zhou, W. Formation, morphology control and applications of anodic TiO2 nanotube arrays. J. Mater. Chem. 2011, 21, 8955–8970. [Google Scholar] [CrossRef]
- Dong, Z.H.; Song, Y. Size-and morphology-dependent structural transformations in anatase TiO2 nanowires under high pressures. Can. J. Chem. 2015, 93, 165–172. [Google Scholar] [CrossRef]
- Shankar, K.; Mor, G.K.; Prakasam, H.E.; Yoriya, S.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18, 065707. [Google Scholar] [CrossRef]
- Wang, X.Q.; Li, Y.F.; Song, H.; Huang, Y.D.; Su, R.; Besenbacher, F. Fluoride concentration controlled TiO2 nanotubes: The interplay of microstructure and photocatalytic performance. RSC Adv. 2016, 6, 18333–18339. [Google Scholar] [CrossRef]
- Partheeban, T.; Kesavan, T.; Jithin, A.; Dharaneshwar, S.; Sasidharan, M. Melamine-templated TiO2 nanoparticles as anode with high capacity and cycling stability for lithium-ion batteries. J. Solid State Electrochem. 2020. [Google Scholar] [CrossRef]
- Wang, H.; Liang, X.; Wang, J.; Jiao, S.; Xue, D. Multifunctional inorganic nanomaterials for energy applications. Nanoscale 2020, 12, 14–42. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.; Auer, A.; Portenkirchner, E.; Kunze-Liebhauser, J. The role of surface films during lithiation of amorphous and anatase TiO2 nanotubes. J. Electroanal. Chem. 2018, 812, 166–173. [Google Scholar] [CrossRef]
- Sugiawati, V.; Vacandio, F.; Djenizian, T. All-Solid-State Lithium Ion Batteries Using Self-Organized TiO2 Nanotubes Grown from Ti-6Al-4V Alloy. Molecules 2020, 25, 2121. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, K.; Xue, D. A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids. Adv. Energy Mater. 2018, 8, 1703329. [Google Scholar] [CrossRef]
- Bresser, D.; Paillard, E.; Binetti, E.; Krueger, S.; Striccoli, M.; Winter, M.; Passerini, S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J. Power Sources 2012, 206, 301–309. [Google Scholar] [CrossRef]
- Huo, J.; Xue, Y.; Liu, Y.; Guo, S. Low-temperature preparation of mesoporous TiO2 honeycomb-like structure on TiO2 nanotube arrays as binder-free anodes for lithium-ion batteries. J. Electroanal. Chem. 2020, 863, 114088. [Google Scholar] [CrossRef]
- Jiao, S.; Xue, D. High areal capacitance of manganese oxide electrodes with cerium as rare earth modification. Nanotechnology 2020, 31, 354004. [Google Scholar] [CrossRef]
- Liang, X.; Xue, D. Ce(OH)3 as a novel negative electrode material for supercapacitors. Nanotechnology 2020, 31, 374003. [Google Scholar] [CrossRef]
Anodization Electrolyte | Samples | Nanotube Diameter (nm) | Nanotube Length (μm) | 2nd Discharge Capacity (μAh/cm2) |
---|---|---|---|---|
0.2 wt% NH4F | TiO2-2 h | 70 | 6.5 | 269.1 |
TiO2-5 h | 100 | 11 | 448.2 | |
TiO2-10 h | 130 | 17 | 705.8 | |
TiO2-20 h | 145 | 40 | 1251.1 | |
TiO2-2 h-450 °C | 70 | 6.5 | 190.4 | |
TiO2-5 h-450 °C | 100 | 11 | 347.3 | |
TiO2-10 h-450 °C | 130 | 17 | 558.8 | |
TiO2-20 h-450 °C | 145 | 40 | 1336.9 | |
0.5 wt% NH4F | TiO2-2 h | 80 | 7.5 | 264.1 |
TiO2-5 h | 130 | 12 | 444.2 | |
TiO2-10 h | 150 | 18 | 808.3 | |
TiO2-20 h | 160 | 45 | 1576.1 | |
TiO2-2 h-450 °C | 80 | 7.5 | 203.2 | |
TiO2-5 h-450 °C | 130 | 12 | 339.5 | |
TiO2-10 h-450 °C | 150 | 18 | 706.3 | |
TiO2-20 h-450 °C | 160 | 45 | 1220.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Chen, K.; Xue, D. Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. Materials 2021, 14, 510. https://doi.org/10.3390/ma14030510
Cao W, Chen K, Xue D. Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. Materials. 2021; 14(3):510. https://doi.org/10.3390/ma14030510
Chicago/Turabian StyleCao, Wangzhu, Kunfeng Chen, and Dongfeng Xue. 2021. "Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances" Materials 14, no. 3: 510. https://doi.org/10.3390/ma14030510
APA StyleCao, W., Chen, K., & Xue, D. (2021). Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. Materials, 14(3), 510. https://doi.org/10.3390/ma14030510