Biogenic Synthesis and Characterization of Antioxidant and Antimicrobial Silver Nanoparticles Using Flower Extract of Couroupita guianensis Aubl.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Required Chemicals
2.2. Extract Preparation from Whole Flowers
2.3. Synthesis of Silver Nanoparticles (AgNPs)
2.4. Characterization of Silver Nanoparticles
2.4.1. UV-Vis Spectroscopic Analysis
2.4.2. X-ray Diffraction (XRD) Analysis
2.4.3. Fourier Transform Infrared (FT-IR) Analysis of AgNPs
2.5. Antioxidant Activity of Plant Extract and AgNPs
2.6. Study of Antibacterial Sensitivity
2.7. Statistical Analysis
2.8. Molecular Dynamics Simulations(MDS)
3. Results
3.1. Silver Nanoparticles Formation
3.2. UV-Vis Spectroscopy Analysis
3.3. XRD Analysis
3.4. Antioxidant Activity Studies
3.5. Antimicrobial Activity of AgNPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green Chemistry and the Health Implications of Nanoparticles. Green Chem. 2006, 8, 417–432. [Google Scholar] [CrossRef]
- Anjum, S.; Anjum, I.; Hano, C.; Kousar, S. Advances in Nanomaterials as Novel Elicitors of Pharmacologically Active Plant Specialized Metabolites: Current Status and Future Outlooks. RSC Adv. 2019, 9, 40404–40423. [Google Scholar] [CrossRef][Green Version]
- Abbasi, B.H.; Fazal, H.; Ahmad, N.; Ali, M.; Giglioli-Guivarch, N.; Hano, C. Chapter 5—Nanomaterials for cosmeceuticals: Nanomaterials-induced advancement in cosmetics, challenges, and opportunities. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Rajendran, S., Slimani, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–108. ISBN 978-0-12-822286-7. [Google Scholar]
- Shafiq, M.; Anjum, S.; Hano, C.; Anjum, I.; Abbasi, B.H. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020, 9, 148. [Google Scholar] [CrossRef][Green Version]
- Nadeem, M.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Hashmi, S.S.; Ahmad, W.; Zahir, A. The Current Trends in the Green Syntheses of Titanium Oxide Nanoparticles and Their Applications. Green Chem. Lett. Rev. 2018, 11, 492–502. [Google Scholar] [CrossRef][Green Version]
- Roopan, S.M.; Rohit; Madhumitha, G.; Rahuman, A.A.; Kamaraj, C.; Bharathi, A.; Surendra, T.V. Low-Cost and Eco-Friendly Phyto-Synthesis of Silver Nanoparticles Using Cocos Nucifera Coir Extract and Its Larvicidal Activity. Ind. Crop. Prod. 2013, 43, 631–635. [Google Scholar] [CrossRef]
- Muthukumaran, U.; Govindarajan, M.; Rajeswary, M.; Hoti, S.L. Synthesis and Characterization of Silver Nanoparticles Using Gmelina Asiatica Leaf Extract against Filariasis, Dengue, and Malaria Vector Mosquitoes. Parasitol. Res 2015, 114, 1817–1827. [Google Scholar] [CrossRef]
- Yu, D.-G. Formation of Colloidal Silver Nanoparticles Stabilized by Na+-Poly(Gamma-Glutamic Acid)-Silver Nitrate Complex via Chemical Reduction Process. Colloids Surf. B Biointerfaces 2007, 59, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Mallick, K.; Witcomb, M.J.; Scurrell, M.S. Self-Assembly of Silver Nanoparticles in a Polymer Solvent: Formation of a Nanochain through Nanoscale Soldering. Mater. Chem. Phys. 2005, 90, 221–224. [Google Scholar] [CrossRef]
- Shah, M.; Nawaz, S.; Jan, H.; Uddin, N.; Ali, A.; Anjum, S.; Giglioli-Guivarc’h, N.; Hano, C.; Abbasi, B.H. Synthesis of Bio-Mediated Silver Nanoparticles from Silybum Marianum and Their Biological and Clinical Activities. Mater. Sci. Eng. C 2020, 112, 110889. [Google Scholar] [CrossRef]
- Jan, H.; Shah, M.; Usman, H.; Khan, M.A.; Zia, M.; Hano, C.; Abbasi, B.H. Biogenic Synthesis and Characterization of Antimicrobial and Antiparasitic Zinc Oxide (ZnO) Nanoparticles Using Aqueous Extracts of the Himalayan Columbine (Aquilegia pubiflora). Front. Mater. 2020, 7, 249. [Google Scholar] [CrossRef]
- Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Extracellular Synthesis of Silver Nanoparticles by a Silver-Tolerant Yeast Strain MKY3. Nanotechnology 2002, 14, 95–100. [Google Scholar] [CrossRef]
- Sumaira; Khan, T.; Abbasi, B.H.; Afridi, M.S.; Tanveer, F.; Ullah, I.; Bashir, S.; Hano, C. Melatonin-Enhanced Biosynthesis of Antimicrobial AgNPs by Improving the Phytochemical Reducing Potential of a Callus Culture of Ocimum basilicum L. Var. Thyrsiflora. RSC Adv. 2017, 7, 38699–38713. [Google Scholar] [CrossRef][Green Version]
- Shahverdi, A.R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A.-A. Rapid Synthesis of Silver Nanoparticles Using Culture Supernatants of Enterobacteria: A Novel Biological Approach. Process Biochem. 2007, 42, 919–923. [Google Scholar] [CrossRef]
- Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine Herbstii Leaf Aqueous Extracts. Colloids Surf. B Biointerfaces 2012, 98, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and Antibacterial Activity of Silver Nanoparticles Synthesized by Cestrum Nocturnum. J. Ayurveda Integr. Med. 2020, 11, 37–44. [Google Scholar] [CrossRef]
- Singh, R.; Hano, C.; Nath, G.; Sharma, B. Green Biosynthesis of Silver Nanoparticles Using Leaf Extract of Carissa carandas L. and Their Antioxidant and Antimicrobial Activity against Human Pathogenic Bacteria. Biomolecules 2021, 11, 299. [Google Scholar] [CrossRef]
- Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green Synthesis of Silver Nanoparticles from Leaf Extract of Mimusops elengi, Linn. for Enhanced Antibacterial Activity against Multi Drug Resistant Clinical Isolates. Colloids Surf. B Biointerfaces 2013, 108, 255–259. [Google Scholar] [CrossRef]
- Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of Silver Nanoparticles Using Alternanthera sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities. Colloids Surf. B Biointerfaces 2013, 102, 288–291. [Google Scholar] [CrossRef]
- Ahmed, S.; Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef][Green Version]
- Yu, L.; Memon, H.; Bhavsar, P.; Yasin, S. Fabrication of Alginate Fibers Loaded with Silver Nanoparticles Biosynthesized via Dolcetto Grape Leaves (Vitis vinifera Cv.): Morphological, Antimicrobial Characterization and In Vitro Release Studies. Mater. Focus 2016, 5, 216–221. [Google Scholar] [CrossRef]
- Ullah, N.; Li, D.; Xiaodong, C.; Yasin, S.; Umair, M.; Eede, S.; Wei, Q. Photo–Irradiation Based Biosynthesis of Silver Nanoparticles by Using an Ever Green Shrub and Its Antibacterial Study. Dig. J. Nanomater. Biostruct. 2015, 10, 95–105. [Google Scholar]
- Yasin, S.; Liu, L.; Yao, J. Biosynthesis of Silver Nanoparticles by Bamboo Leaves Extract and Their Antimicrobial Activity. J. Fiber Bioeng. Inform. 2013, 1, 77–84. [Google Scholar] [CrossRef]
- Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic Therapeutic Applications of Noble Metal Nanoparticles: Past, Present and Future. Chem. Soc. Rev. 2012, 41, 2943–2970. [Google Scholar] [CrossRef][Green Version]
- Jiang, H.; Manolache, S.; Wong, A.C.L.; Denes, F.S. Plasma-Enhanced Deposition of Silver Nanoparticles onto Polymer and Metal Surfaces for the Generation of Antimicrobial Characteristics. J. Appl. Polym. Sci. 2004, 93, 1411–1422. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, B. Metal-Based Therapy in Traditional and Modern Medicine Systems. In Biomedical Applications of Metals; Rai, M., Ingle, A.P., Medici, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 195–211. ISBN 978-3-319-74814-6. [Google Scholar]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Tiwari, P.; Kumari, N.; Sharma, B. Biomedical Applications of Green Synthesized Nanoparticles. In Advances in Pharmaceutical Biotechnology: Recent Progress and Future Applications; Patra, J.K., Shukla, A.C., Das, G., Eds.; Springer: Singapore, 2020; pp. 235–245. ISBN 978-981-15-2195-9. [Google Scholar]
- Foster, T.J. Antibiotic Resistance in Staphylococcus Aureus. Current Status and Future Prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef] [PubMed]
- Mainil, J. Escherichia coli Virulence Factors. Vet. Immunol. Immunopathol. 2013, 152, 2–12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The Global Preclinical Antibacterial Pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285. [Google Scholar] [CrossRef][Green Version]
- Khatoon, U.T.; Rao, G.V.S.N.; Mohan, M.K.; Ramanaviciene, A.; Ramanavicius, A. Comparative Study of Antifungal Activity of Silver and Gold Nanoparticles Synthesized by Facile Chemical Approach. J. Environ. Chem. Eng. 2018, 6, 5837–5844. [Google Scholar] [CrossRef]
- Khatoon, U.T.; Nageswara Rao, G.V.S.; Mohan, K.M.; Ramanaviciene, A.; Ramanavicius, A. Antibacterial and Antifungal Activity of Silver Nanospheres Synthesized by Tri-Sodium Citrate Assisted Chemical Approach. Vacuum 2017, 146, 259–265. [Google Scholar] [CrossRef]
- Singh, R.; Kumari, N.; Gangwar, M.; Nath, G. Qualitative characterization of phytochemicals and in vitro antimicrobial evaluation of leaf extract of couroupita guianensis aubl—A threatened medicinal tree. Int. J. Pharm. Pharm. Sci. 2015, 7, 212–215. [Google Scholar]
- Girth, S.N.; Rajath, S.; Chandan, N.; Shivashankar, M.; Rajeshwari, S. Comparative Antioxidant and Antimicrobial Studies of Cold and Hot Bark Hydromethanolic Extract of Couroupita Guianensis Aubl. Res. Pharm. 2015, 3, 265. [Google Scholar]
- Shah, G.N.; Shete, S.A.; Patil, V.S.; Patil, K.D.; Killedar, S. Standardization and Anti Bacterial Activity of Couroupita guianensis Fruit Pulp Extract. Int. J. Pharmacogn. Phytochem. Res. 2013, 4, 85–89. [Google Scholar]
- Pradhan, D.; Tripathy, G. Evaluation of the Immunomodulatory Activity of the Methanolic Extract of Couroupita Guianensis Aubl. Flowers in Rats. Nat. Prod. Radiance 2009, 8, 37–42. [Google Scholar]
- Nagavani, V.; Madhavi, Y.; Rao, D.B.; Rao, P.K.; Rao, T.R. Free Radical Scavenging Activity and Qualitative Analysis of Polyphenols by RP-HPLC in the Flowers of Couroupita Guianensis Abul. Electron. J. Environ. Agric. Food Chem. 2010, 9, 1471–1484. [Google Scholar]
- Tayade, P.B.; Adivarekar, R.V. Extraction of Indigo Dye from Couroupita Guianensisand Its Application on Cotton Fabric. Fash. Text. 2014, 1, 16. [Google Scholar] [CrossRef][Green Version]
- Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Nat. Prod. Bioprospect. 2020, 10, 297–306. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural Product-Derived Phytochemicals as Potential Agents against Coronaviruses: A Review. Virus Res. 2020, 284, 197989. [Google Scholar] [CrossRef]
- Rajesh Kumar, T.V.; Murthy, J.S.R.; Narayana Rao, M.; Bhargava, Y. Evaluation of Silver Nanoparticles Synthetic Potential of Couroupita guianensis Aubl., Flower Buds Extract and Their Synergistic Antibacterial Activity. 3 Biotech. 2016, 6, 92. [Google Scholar] [CrossRef][Green Version]
- NikhithaK, P.; Navyashree, H.T. Green Synthesis of Silver Nanoparticles from Couroupita Guianensis Aubl. Flower Petal Extract and Its Antimicrobial Activity; International Educational Applied Research Journal: Ahmedabad, India, 2019; Volume 3, pp. 59–62. [Google Scholar]
- Singh, R.; Kumari, N. Comparative Determination of Phytochemicals and Antioxidant Activity from Leaf and Fruit of Sapindus mukorrossi Gaertn—A Valuable Medicinal Tree. Ind. Crop. Prod. 2015, 73, 1–8. [Google Scholar] [CrossRef]
- Borchert, H.; Shevchenko, E.V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Determination of Nanocrystal Sizes: A Comparison of TEM, SAXS, and XRD Studies of Highly Monodisperse CoPt3 Particles. Langmuir 2005, 21, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumari, N.; Nath, G. Antimicrobial Efficacy of Callus and In Vitro Leaf Extracts of Sapindus Mukorossi Gaertn. Against Pathogenic Microbes. Mathews J. Pharm. Sci. 2016, 2, 1–4. [Google Scholar]
- Tavanti, F.; Dianat, B.; Catellani, A.; Calzolari, A. Hierarchical Short- and Medium-Range Order Structures in Amorphous GexSe1–x for Selectors Applications. ACS Appl. Electron. Mater. 2020, 2, 2961–2969. [Google Scholar] [CrossRef]
- Tilocca, A. Cooling Rate and Size Effects on the Medium-Range Structure of Multicomponent Oxide Glasses Simulated by Molecular Dynamics. J. Chem. Phys. 2013, 139, 114501. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pedone, A. Properties Calculations of Silica-Based Glasses by Atomistic Simulations Techniques: A Review. J. Phys. Chem. C 2009, 113, 20773–20784. [Google Scholar] [CrossRef]
- Kang, K.-H.; Sa, I.; Lee, J.-C.; Fleury, E.; Lee, B.-J. Atomistic Modeling of the Cu–Zr–Ag Bulk Metallic Glass System. Scr. Mater. 2009, 61, 801–804. [Google Scholar] [CrossRef]
- Begum, K.; Motobayashi, T.; Hasan, N.; Appiah, K.S.; Shammi, M.; Fujii, Y. Indigo as a Plant Growth Inhibitory Chemical from the Fruit Pulp of Couroupita guianensis Aubl. Agronomy 2020, 10, 1388. [Google Scholar] [CrossRef]
- Wu, Y.; Tepper, H.L.; Voth, G.A. Flexible Simple Point-Charge Water Model with Improved Liquid-State Properties. J. Chem. Phys. 2006, 124, 024503. [Google Scholar] [CrossRef]
- Tavanti, F.; Pedone, A.; Menziani, M.C.; Alexander-Katz, A. Computational Insights into the Binding of Monolayer-Capped Gold Nanoparticles onto Amyloid-β Fibrils. ACS Chem. Neurosci. 2020, 11, 3153–3160. [Google Scholar] [CrossRef]
- Tavanti, F.; Pedone, A.; Menziani, M.C. Disclosing the Interaction of Gold Nanoparticles with Aβ(1–40) Monomers through Replica Exchange Molecular Dynamics Simulations. Int. J. Mol. Sci. 2021, 22, 26. [Google Scholar] [CrossRef]
- Kyrychenko, A.; Korsun, O.M.; Gubin, I.I.; Kovalenko, S.M.; Kalugin, O.N. Atomistic Simulations of Coating of Silver Nanoparticles with Poly(Vinylpyrrolidone) Oligomers: Effect of Oligomer Chain Length. J. Phys. Chem. C 2015, 119, 7888–7899. [Google Scholar] [CrossRef]
- Kyrychenko, A.; Blazhynska, M.M.; Kalugin, O.N. Protonation-Dependent Adsorption of Polyarginine onto Silver Nanoparticles. J. Appl. Phys. 2020, 127, 075502. [Google Scholar] [CrossRef]
- Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; van Gunsteren, W.F. Definition and Testing of the GROMOS Force-Field Versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40, 843–856. [Google Scholar] [CrossRef]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Heinz, H.; Vaia, R.A.; Farmer, B.L.; Naik, R.R. Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials. J. Phys. Chem. C 2008, 112, 17281–17290. [Google Scholar] [CrossRef]
- Tavanti, F.; Pedone, A.; Matteini, P.; Menziani, M.C. Computational Insight into the Interaction of Cytochrome C with Wet and PVP-Coated Ag Surfaces. J. Phys. Chem. B 2017, 121, 9532–9540. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef][Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucl. Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef][Green Version]
- Guan, H.-H.; Yoshimura, M.; Chuankhayan, P.; Lin, C.-C.; Chen, N.-C.; Yang, M.-C.; Ismail, A.; Fun, H.-K.; Chen, C.-J. Crystal Structure of an Antigenic Outer-Membrane Protein from Salmonella Typhi Suggests a Potential Antigenic Loop and an Efflux Mechanism. Sci. Rep. 2015, 5, 16441. [Google Scholar] [CrossRef][Green Version]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. [Google Scholar] [CrossRef][Green Version]
- Lodesani, F.; Tavanti, F.; Menziani, M.C.; Maeda, K.; Takato, Y.; Urata, S.; Pedone, A. Exploring the Crystallization Path of Lithium Disilicate through Metadynamics Simulations. Phys. Rev. Mater. 2021, 5, 075602. [Google Scholar] [CrossRef]
- Rai, A.; Singh, A.; Ahmad, A.; Sastry, M. Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles. Langmuir 2006, 22, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Kim, B.S. Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Noginov, M.A.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.; Ritzo, B.A.; Drachev, V.P.; Shalaev, V.M. The Effect of Gain and Absorption on Surface Plasmons in Metal Nanoparticles. Appl. Phys. B 2007, 86, 455–460. [Google Scholar] [CrossRef]
- Kathiravan, V.; Ravi, S.; Ashokkumar, S.; Velmurugan, S.; Elumalai, K.; Khatiwada, C.P. Green Synthesis of Silver Nanoparticles Using Croton Sparsiflorus Morong Leaf Extract and Their Antibacterial and Antifungal Activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 139, 200–205. [Google Scholar] [CrossRef]
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of Silver Nanoparticles Synthesized Using Urtica dioica Linn. Leaves and Their Synergistic Effects with Antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef][Green Version]
- Joshi, N.; Jain, N.; Pathak, A.; Singh, J.; Prasad, R.; Upadhyaya, C.P. Biosynthesis of Silver Nanoparticles Using Carissa carandas Berries and Its Potential Antibacterial Activities. J. Sol Gel Sci. Technol. 2018, 86, 682–689. [Google Scholar] [CrossRef]
- Sanz-Biset, J.; Campos-de-la-Cruz, J.; Epiquién-Rivera, M.A.; Cañigueral, S. A First Survey on the Medicinal Plants of the Chazuta Valley (Peruvian Amazon). J. Ethnopharmacol. 2009, 122, 333–362. [Google Scholar] [CrossRef]
- Rane, J.B.; Vahanwala, S.J.; Golatkar, S.G.; Ambaye, R.Y.; Khadse, B.G. Chemical Examination of the Flowers of Couroupita guianensis Aubl. Indian J. Pharm. Sci. 2001, 63, 72–73. [Google Scholar]
- Row, L.R.; Sastry, C.S.P.; Murthy, P.S. Chemical Examination of Couroupita guianensis Aubl. Curr. Sci. 1966, 35, 146–147. [Google Scholar]
- Singh, R.; Sharma, B. Nanoparticles Synthesis and Nanotechnological Applications of Sapindus Species. In Biotechnological Advances, Phytochemical Analysis and Ethnomedical Implications of Sapindus Species; Singh, R., Sharma, B., Eds.; Springer: Singapore, 2019; pp. 107–110. ISBN 978-981-329-189-8. [Google Scholar]
- Singh, R.; Kumari, N.; Nath, G. Free Radicals Scavenging Activity and Antimicrobial Potential of Leaf and Fruit Extracts of Sapindus mukorossi Gaertn. against Clinical Pathogen. Int. J. Phytomed. 2016, 8, 1770. [Google Scholar] [CrossRef]
Concentration (%) | Antioxidant Activity Flower Extract | AgNPs (25 °C) |
---|---|---|
5 | 15.32 ± 0.17 h | 50.53 ± 0.59 f |
10 | 20.24 ± 0.24 f | 65.16 ± 0.10 c |
15 | 23.55 ± 0.17 cd | 68.63 ± 0.16 b |
20 | 25.40 ± 0.45 b | 70.35 ± 0.11 a |
25 | 28.50 ± 0.30 a | 67.47 ± 0.25 b |
30 | 24.65 ± 0.31 cd | 64.43 ± 0.25 c |
35 | 22.40 ± 0.36 e | 61.96 ± 0.24 de |
40 | 19.39 ± 0.12 g | 60.46 ± 0.23 de |
Bacteria | Growth Inhibition Zone (mm) | ||
---|---|---|---|
Flower Extract | AgNO3 | AgNPs | |
S. typhimurium | 7.33 ± 0.57 | 9.00 ± 0.00 | 16.86 ± 0.30 |
Enterobacter | 8.00 ± 1.00 | 7.00 ± 1.00 | 16.5 ± 0.50 |
Citrobacter | 8.66 ± 0.57 | 8.23 ± 0.66 | 12.8 ± 0.40 |
Morganella spp. | 6.46 ± 0.41 | 7.00 ± 0.00 | 12.00 ± 1.00 |
Gonococci | 6.00 ± 0.00 | 7.00 ± 0.00 | 16.16 ± 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Hano, C.; Tavanti, F.; Sharma, B. Biogenic Synthesis and Characterization of Antioxidant and Antimicrobial Silver Nanoparticles Using Flower Extract of Couroupita guianensis Aubl. Materials 2021, 14, 6854. https://doi.org/10.3390/ma14226854
Singh R, Hano C, Tavanti F, Sharma B. Biogenic Synthesis and Characterization of Antioxidant and Antimicrobial Silver Nanoparticles Using Flower Extract of Couroupita guianensis Aubl. Materials. 2021; 14(22):6854. https://doi.org/10.3390/ma14226854
Chicago/Turabian StyleSingh, Reetika, Christophe Hano, Francesco Tavanti, and Bechan Sharma. 2021. "Biogenic Synthesis and Characterization of Antioxidant and Antimicrobial Silver Nanoparticles Using Flower Extract of Couroupita guianensis Aubl." Materials 14, no. 22: 6854. https://doi.org/10.3390/ma14226854