Broadband Spin-Dependent Directional Coupler via Single Optimized Metallic Catenary Antenna
Abstract
1. Introduction
2. Design Principles and Simulation Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Wang, T.; Quan, B.; Zhao, H.; Gu, C.; Li, J.; Wang, X.; Situ, G.; Zhang, Y. Polarization multiplexing for double images display. Opto-Electron. Adv. 2019, 2, 180029. [Google Scholar] [CrossRef]
- Luo, X. Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 2018, 6, 1701201. [Google Scholar] [CrossRef]
- Luo, X. Engineering optics 2.0: A revolution in optical materials, devices, and systems. ACS Photonics 2018, 5, 4724–4738. [Google Scholar] [CrossRef]
- Luo, X. Catenary Optics; Springer: Berlin, Germany, 2019. [Google Scholar]
- Luo, X.; Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 2004, 84, 4780–4782. [Google Scholar] [CrossRef]
- Sun, S.; He, Q.; Hao, J.; Xiao, S.; Zhou, L. Electromagnetic metasurfaces: Physics and applications. Adv. Opt. Photonics 2019, 11, 380–479. [Google Scholar] [CrossRef]
- Smolyaninov, I.I.; Hung, Y.-J.; Davis, C.C. Magnifying superlens in the visible frequency range. Science 2007, 315, 1699–1701. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Yang, X.; Wang, C.; Feng, Q.; Luo, X. Super-resolution imaging at different wavelengths by using a one-dimensional metamaterial structure. J. Opt. 2010, 12, 035104. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Wei, Q.-H.; Zhang, X. Surface plasmon interference nanolithography. Nano Lett. 2005, 5, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Luo, X. Engineering Optics 2.0: A Revolution in Optical Theories, Materials, Devices and Systems; Springer: Berlin, Germany; Singapore, 2019. [Google Scholar]
- Chen, C.; Chen, P.; Xi, J.; Huang, W.; Li, K.; Liang, L.; Shi, F.; Shi, J. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Adv. 2020, 10, 115213. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Pu, M.; Huang, Y.; Li, X.; Ma, X.; Xu, M.; Luo, X. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging. Iscience 2019, 21, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Palomba, S.; Park, Y.; Zentgraf, T.; Yin, X.; Zhang, X. Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett. 2012, 12, 4853–4858. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhao, Y.; Gan, D.; Wang, C.; Du, C.; Luo, X. Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett. 2008, 92, 101501. [Google Scholar] [CrossRef]
- Chen, P.; Chen, C.; Qin, S.; Xi, J.; Huang, W.; Shi, F.; Li, K.; Liang, L.; Shi, J. Efficient planar plasmonic directional launching of linearly polarized light in a catenary metasurface. Phys. Chem. Chem. Phys. 2020, 22, 27554–27559. [Google Scholar] [CrossRef]
- Luo, X.; Pu, M.; Li, X.; Guo, Y.; Ma, X. Young’s double-slit interference enabled by surface plasmon polaritons: A review. J. Phys. D 2019, 53, 053001. [Google Scholar] [CrossRef]
- Pu, M.; Guo, Y.; Li, X.; Ma, X.; Luo, X. Revisitation of extraordinary young’s interference: From catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 2018, 5, 3198–3204. [Google Scholar] [CrossRef]
- Luo, X.; Astronomy. Principles of electromagnetic waves in metasurfaces. Sci. China: Phys. Mech. Astron. 2015, 58, 594201. [Google Scholar] [CrossRef]
- Luo, X.; Pu, M.; Guo, Y.; Li, X.; Zhang, F.; Ma, X. Catenary Functions Meet Electromagnetic Waves: Opportunities and Promises. Adv. Opt. Mater. 2020, 8, 2001194. [Google Scholar] [CrossRef]
- Pu, M.; Ma, X.; Guo, Y.; Li, X.; Luo, X. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 2018, 26, 19555–19562. [Google Scholar] [CrossRef]
- Bao, Y.; Liang, H.; Liao, H.; Li, Z.; Sun, C.; Chen, J.; Gong, Q. Efficient unidirectional launching of surface plasmons by multi-groove structures. Plasmonics 2017, 12, 1425–1430. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, C.-Y.; Chen, H.-Y.; Lin, M.-H.; Lu, Y.-J.; Gwo, S. Dual-band planar plasmonic unidirectional launching in a semiannular apertures array. ACS Photonics 2016, 3, 584–589. [Google Scholar] [CrossRef]
- Huang, W.; Yang, J.; Xiao, X.; Zhang, J. Surface Plasmon Polariton Unidirectional Nano-Launcher Based on the Strong Coupling Effects in an Asymmetric Optical Slot Nanoantenna Pair. Plasmonics 2015, 10, 1551–1556. [Google Scholar] [CrossRef]
- Liu, D.; Sun, L.; Lu, F.; Xu, A. Ultrabroadband and wide-angle unidirectional coupling of surface plasmons based on chirped-nanoslits grating. J. Lightwave Technol. 2017, 35, 2818–2822. [Google Scholar] [CrossRef]
- López-Tejeira, F.; Rodrigo, S.G.; Martín-Moreno, L.; García-Vidal, F.J.; Devaux, E.; Ebbesen, T.W.; Krenn, J.R.; Radko, I.; Bozhevolnyi, S.I.; González, M.U. Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 2007, 3, 324–328. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874. [Google Scholar] [CrossRef]
- Sun, C.; Chen, J.; Yao, W.; Li, H.; Gong, Q. Manipulating surface-plasmon-polariton launching with quasi-cylindrical waves. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Bernal Arango, F.; Kwadrin, A.; Koenderink, A.F. Plasmonic antennas hybridized with dielectric waveguides. ACS Nano 2012, 6, 10156–10167. [Google Scholar] [CrossRef]
- Sidiropoulos, T.P.; Nielsen, M.P.; Roschuk, T.R.; Zayats, A.V.; Maier, S.A.; Oulton, R.F. Compact optical antenna coupler for silicon photonics characterized by third-harmonic generation. ACS Photonics 2014, 1, 912–916. [Google Scholar] [CrossRef]
- Vercruysse, D.; Neutens, P.; Lagae, L.; Verellen, N.; Van Dorpe, P. Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide. ACS Photonics 2017, 4, 1398–1402. [Google Scholar] [CrossRef]
- Ge, Z.; Zhang, L.; Wang, G.; Zhang, W.; Liu, M.; Li, S.; Wang, L.; Sun, Q.; Ren, W.; Si, J. On-chip router elements based on silicon hybrid plasmonic waveguide. IEEE Photonics Technol. Lett. 2017, 29, 952–955. [Google Scholar] [CrossRef]
- Wang, S.; Liu, T. Four-port polarization and topological charge controlled directional plasmonic coupler. IEEE Photonics Technol. Lett. 2016, 28, 2391–2394. [Google Scholar] [CrossRef]
- Guo, Y.; Pu, M.; Li, X.; Ma, X.; Song, S.; Zhao, Z.; Luo, X. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin–orbit interaction. IEEE J. Sel. Top. Quantum Electron 2018, 24, 1–7. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S.; Applications. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2013, 2, e70. [Google Scholar] [CrossRef]
- Pu, M.; Li, X.; Ma, X.; Wang, Y.; Zhao, Z.; Wang, C.; Hu, C.; Gao, P.; Huang, C.; Ren, H. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 2015, 1, e1500396. [Google Scholar] [CrossRef]
- Li, X.; Pu, M.; Zhao, Z.; Ma, X.; Jin, J.; Wang, Y.; Gao, P.; Luo, X. Catenary nanostructures as compact Bessel beam generators. Sci. Rep. 2016, 6, 20524. [Google Scholar] [CrossRef]
- Luo, X.-G.; Pu, M.-B.; Li, X.; Ma, X.-L. Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 2017, 6, e16276. [Google Scholar] [CrossRef]
- Guo, Y.; Pu, M.; Li, X.; Ma, X.; Luo, X. Ultra-broadband spin-controlled directional router based on single optical catenary integrated on silicon waveguide. Appl. Phys. Express 2018, 11, 092202. [Google Scholar] [CrossRef]
- Clifford, T. The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788; Orell Füssli Zurich zbMATH: Zürich, Switzerland, 1960; pp. 1638–1788. [Google Scholar]
- Heyman, J. Hooke’s cubico–parabolical conoid. Notes Rec. R. Soc. Lond. 1998, 52, 39–50. [Google Scholar] [CrossRef]
- Gilbert, D., XV. On the Mathematical Theory of Suspension Bridges, with Tables for Facilitating Their Construction; Philosophical Transactions of the Royal Society of London: London, UK, 1826; pp. 202–218. [Google Scholar]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Hu, F.; Liu, Z.; Xie, P.; Shen, Y.; Xiao, Q.; Fu, X.; Bae, S.-H.; Gong, M. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization. Opt. Express 2019, 27, 16425–16439. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Aieta, F.; Kats, M.A.; Blanchard, R.; Aoust, G.; Tetienne, J.-P.; Gaburro, Z.; Capasso, F. Flat optics: Controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron 2013, 19, 4700423. [Google Scholar]
- Edward, D.P. Handbook of Optical Constants of Solids; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Johnson, P.B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Bourke, L.; Blaikie, R.J. Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures. J Opt 2017, 19, 095003. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, H.; Jiang, L.; Li, X. Genetic optimization of double subwavelength metal slits surrounded by surface dielectric gratings for directional beaming manipulation. Opt. Commun. 2012, 285, 2201–2206. [Google Scholar] [CrossRef]
- Shirakawa, T.; Ishikawa, K.L.; Suzuki, S.; Yamada, Y.; Takahashi, H. Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm. Opt. Express 2010, 18, 8383–8391. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Mi, J.; Chen, P.; Du, X.; Xi, J.; Liang, L.; Shi, J. Broadband Spin-Dependent Directional Coupler via Single Optimized Metallic Catenary Antenna. Materials 2021, 14, 326. https://doi.org/10.3390/ma14020326
Chen C, Mi J, Chen P, Du X, Xi J, Liang L, Shi J. Broadband Spin-Dependent Directional Coupler via Single Optimized Metallic Catenary Antenna. Materials. 2021; 14(2):326. https://doi.org/10.3390/ma14020326
Chicago/Turabian StyleChen, Cong, Jiajia Mi, Panpan Chen, Xiang Du, Jianxin Xi, Li Liang, and Jianping Shi. 2021. "Broadband Spin-Dependent Directional Coupler via Single Optimized Metallic Catenary Antenna" Materials 14, no. 2: 326. https://doi.org/10.3390/ma14020326
APA StyleChen, C., Mi, J., Chen, P., Du, X., Xi, J., Liang, L., & Shi, J. (2021). Broadband Spin-Dependent Directional Coupler via Single Optimized Metallic Catenary Antenna. Materials, 14(2), 326. https://doi.org/10.3390/ma14020326