Self-Lubricating Materials for Extreme Condition Applications
Abstract
:1. Introduction
2. Tribology of Solid Lubricants
2.1. Soft Metals
2.2. Transition Metal Dichalcogenides (TMD)
2.3. Metal Oxides
2.4. Fluorides
2.5. Hexagonal Boron Nitride (h–BN)
2.6. Polymers
2.7. Carbon
3. Applications and Challenges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CoF | Coefficient of friction |
MoS2 | Molybdenum disulfide |
WS2 | Tungsten disulfide |
TMD | Transition metal dichalcogenide |
h–BN | Hexagonal boron nitride |
HT | High temperature |
RT | Room temperature |
SCF | Short carbon fibers |
PI | Polyimide |
PEEK | Polytheretherketone |
PTFE | Polytetrafluoroethylene |
References
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Gong, H.; Yu, C.; Zhang, L.; Xie, G.; Guo, D.; Luo, J. Intelligent lubricating materials: A review. Compos. Part B Eng. 2020, 202, 108450. [Google Scholar] [CrossRef]
- Fusaro, R.L. Evaluation of several polymer materials for use as solid lubricants in space. Tribol. Trans. 1988, 31, 174–181. [Google Scholar] [CrossRef]
- Aouadi, S.; Gao, H.; Martini, A.; Scharf, T.; Muratore, C. Lubricious oxide coatings for extreme temperature applications: A review. Surf. Coat. Technol. 2014, 257, 266–277. [Google Scholar] [CrossRef]
- DellaCorte, C. The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650 °C. Surf. Coat. Technol. 1996, 86-87, 486–492. [Google Scholar] [CrossRef]
- Baker, C.; Chromik, R.; Wahl, K.; Hu, J.; Voevodin, A. Preparation of chameleon coatings for space and ambient environments. Thin Solid Films 2007, 515, 6737–6743. [Google Scholar] [CrossRef]
- Torres, H.; Ripoll, M.R.; Prakash, B. Tribological behaviour of self-lubricating materials at high temperatures. Int. Mater. Rev. 2017, 63, 309–340. [Google Scholar] [CrossRef]
- Zhen, J.; Cheng, J.; Li, M.; Zhu, S.; Long, Z.; Yang, B.; Yang, J. Lubricating behavior of adaptive nickel alloy matrix composites with multiple solid lubricants from 25 °C to 700 °C. Tribol. Int. 2017, 109, 174–181. [Google Scholar] [CrossRef]
- Zailani, Z.A.; Zaibi, N.M.; Hamidon, R.; Harun, A.; Bahari, M.S.; Zakaria, S. Improvement on the surface quality in machining of aluminum alloy involving boron nitride nanoparticles. In Intelligent Manufacturing and Mechatronics; Bahari, M.S., Harun, A., Abidin, Z., Hamidon, R., Zakaria, S., Eds.; Springer: Singapore, 2021; pp. 351–363. [Google Scholar] [CrossRef]
- Hernandez, S.; Hardell, J.; Courbon, C.; Winkelmann, H.; Prakash, B. High temperature friction and wear mechanism map for tool steel and boron steel tribopair. Tribol.-Mater. Surf. Interfaces 2014, 8, 74–84. [Google Scholar] [CrossRef]
- Siddiqui, T.U.; Singh, S.K. Design, fabrication and characterization of a self-lubricated textured tool in dry machining. Mater. Today Proc. 2020, 41, 863–869. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J. High temperature solid-lubricating materials: A review. Tribol. Int. 2018, 133, 206–223. [Google Scholar] [CrossRef]
- Zhen, J.; Cheng, J.; Zhu, S.; Hao, J.; Qiao, Z.; Yang, J.; Liu, W. High-temperature tribological behavior of a nickel alloy matrix solid-lubricating composite under vacuum. Tribol. Int. 2017, 110, 52–56. [Google Scholar] [CrossRef]
- Dunckle, C.; Aggleton, M.; Glassman, J.; Taborek, P. Friction of molybdenum disulfide–titanium films under cryogenic vacuum conditions. Tribol. Int. 2011, 44, 1819–1826. [Google Scholar] [CrossRef]
- Nunez, E.E.; Gheisari, R.; Polycarpou, A.A. Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribol. Int. 2018, 129, 92–111. [Google Scholar] [CrossRef]
- Burris, D.L. Investigation of the tribological behavior of polytetrafluoroethylene at cryogenic temperatures. Tribol. Trans. 2008, 51, 92–100. [Google Scholar] [CrossRef]
- Menezes, P.L.; Nosonovsky, M.; Kailas, S.V.; Lovell, M.R. Friction and wear. In Tribology for Scientists and Engineers: From Basics to Advanced Concepts; Menezes, P.L., Nosonovsky, M., Ingole, S.P., Kailas, S.V., Lovell, M.R., Eds.; Springer: New York, NY, USA, 2013; pp. 43–91. ISBN 978-1-4614-1945-7. [Google Scholar]
- Omrani, E.; Rohatgi, P.K.; Menezes, P.L. Tribology and Applications of Self-Lubricating Materials; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1498768490. [Google Scholar]
- Kasar, A.K.; Menezes, P.L. Friction and wear behavior of alumina composites with in-situ formation of aluminum borate and boron nitride. Materials 2020, 13, 4502. [Google Scholar] [CrossRef]
- Menezes, P.L.; Rohatgi, P.K.; Omrani, E. Self-Lubricating Composites; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9783662565285. [Google Scholar]
- Wang, D.; Chen, W.; Sun, Q.; Wang, L.; Zhu, S.; Cheng, J.; Yang, J. Tribological properties of Ni3Al-Ni3Nb-Ag self-lubricating alloys at a wide temperature range. Wear 2021, 480–481, 203933. [Google Scholar] [CrossRef]
- Shi, X.; Xu, Z.; Wang, M.; Zhai, W.; Yao, J.; Song, S.; Din, A.Q.U.; Zhang, Q. Tribological behavior of TiAl matrix self-lubricating composites containing silver from 25 to 800 °C. Wear 2013, 303, 486–494. [Google Scholar] [CrossRef]
- Patil, M.; Singh, V.; Gupta, A.K.; Regalla, S.P.; Bera, T.C.; Simhachalam, B.; Srinivas, K. Tin layer as a solid lubricant for cold tube drawing processes. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 1–14. [Google Scholar] [CrossRef]
- Wang, D.; Tan, H.; Chen, W.; Zhu, S.; Cheng, J.; Yang, J. Tribological behavior of Ni3Al–Ag based self-lubricating alloy with Ag2MoO4 formed by high temperature tribo-chemical reaction. Tribol. Int. 2020, 153, 106659. [Google Scholar] [CrossRef]
- Sahoo, S. Self-lubricating composites with 2D materials as reinforcement: A new perspective. Reinf. Plast. 2020, 65, 101–103. [Google Scholar] [CrossRef]
- Furlan, K.P.; de Mello, J.D.B.; Klein, A.N. Self-lubricating composites containing MoS2: A review. Tribol. Int. 2018, 120, 280–298. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, Z.; Zhang, G.; Wang, L.; Xue, Q. Self-adaptive MoS2-Pb-Ti film for vacuum and humid air. Surf. Coat. Technol. 2018, 345, 152–166. [Google Scholar] [CrossRef]
- Muratore, C.; Voevodin, A. Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings. Surf. Coat. Technol. 2006, 201, 4125–4130. [Google Scholar] [CrossRef]
- Zhu, S.; Bi, Q.; Niu, M.; Yang, J.; Liu, W. Tribological behavior of NiAl matrix composites with addition of oxides at high temperatures. Wear 2012, 274–275, 423–434. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, J.; Qiao, Z.; Tian, Y.; Yang, J. High temperature lubricating behavior of NiAl matrix composites with addition of CuO. J. Tribol. 2016, 138, 031607. [Google Scholar] [CrossRef]
- Stone, D.; Liu, J.; Singh, D.; Muratore, C.; Voevodin, A.; Mishra, S.; Rebholz, C.; Ge, Q.; Aouadi, S. Layered atomic structures of double oxides for low shear strength at high temperatures. Scr. Mater. 2010, 62, 735–738. [Google Scholar] [CrossRef]
- Suszko, T.; Gulbiński, W.; Jagielski, J. The role of surface oxidation in friction processes on molybdenum nitride thin films. Surf. Coat. Technol. 2005, 194, 319–324. [Google Scholar] [CrossRef]
- Xiang, Z.-F.; Liu, X.-B.; Ren, J.; Luo, J.; Shi, S.-H.; Chen, Y.; Shi, G.-L.; Wu, S.-H. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2. Appl. Surf. Sci. 2014, 313, 243–250. [Google Scholar] [CrossRef]
- Mazumder, S.; Metselaar, H.S.C.; Sukiman, N.L.; Zulkifli, N.W.M. An overview of fluoride-based solid lubricants in sliding contacts. J. Eur. Ceram. Soc. 2020, 40, 4974–4996. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, Y.; Ji, H.; Zheng, X.; Ruan, Q.; Niu, Y.; Liu, Z.; Zeng, Y. Microstructures and tribological properties of plasma sprayed WC–Co–Cu–BaF2/CaF2 self-lubricating wear resistant coatings. Appl. Surf. Sci. 2010, 256, 4938–4944. [Google Scholar] [CrossRef]
- Kong, L.; Bi, Q.; Zhu, S.; Yang, J.; Liu, W. Tribological properties of ZrO2 (Y2O3)–Mo–BaF2/CaF2 composites at high temperatures. Tribol. Int. 2012, 45, 43–49. [Google Scholar] [CrossRef]
- Klemenz, M.; Schulze, V.; Rohr, I.; Löhe, D. Application of the FEM for the prediction of the surface layer characteristics after shot peening. J. Mater. Process. Technol. 2009, 209, 4093–4102. [Google Scholar] [CrossRef]
- Zishan, C.; Hejun, L.; Qiangang, F.; Xinfa, Q. Tribological behaviors of SiC/h-BN composite coating at elevated temperatures. Tribol. Int. 2012, 56, 58–65. [Google Scholar] [CrossRef]
- Podgornik, B.; Kosec, T.; Kocijan, A.; Donik, Č. Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming. Tribol. Int. 2015, 81, 267–275. [Google Scholar] [CrossRef]
- Chen, B.; Bi, Q.; Yang, J.; Xia, Y.; Hao, J. Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 2008, 41, 1145–1152. [Google Scholar] [CrossRef]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Burris, D.L.; Sawyer, W.G. Tribological behavior of PEEK components with compositionally graded PEEK/PTFE surfaces. Wear 2007, 262, 220–224. [Google Scholar] [CrossRef]
- Sawyer, W.; Freudenberg, K.D.; Bhimaraj, P.; Schadler, L.S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 2003, 254, 573–580. [Google Scholar] [CrossRef]
- Furlan, K.P.; Gonçalves, P.D.C.; Consoni, D.R.; Dias, M.V.G.; De Lima, G.A.; de Mello, J.D.B.; Klein, A.N. Metallurgical Aspects of Self-lubricating Composites Containing Graphite and MoS2. J. Mater. Eng. Perform. 2017, 26, 1135–1145. [Google Scholar] [CrossRef]
- Kelly, P.; Arnell, R. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A. A Review to the Laser Cladding of Self-Lubricating Composite Coatings. Lasers Manuf. Mater. Process. 2016, 3, 67–99. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Guo, B.; Zhou, H.; Pu, Y.; Chen, J. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating. Mater. Sci. Eng. A 2008, 491, 47–54. [Google Scholar] [CrossRef]
- Wang, H.M.; Yu, R.L.; Li, S.Q. Microstructure and tribological properties of laser clad NiO/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings. Mocaxue Xuebao/Tribol. 2002, 22, 157–160. [Google Scholar]
- Huang, B.; Zhang, C.; Zhang, G.; Liao, H. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review. Surf. Coat. Technol. 2019, 377. [Google Scholar] [CrossRef]
- Chen, X.; Peng, Z.; Yu, X.; Fu, Z.; Yue, W.; Wang, C. Microstructure and tribological performance of self-lubricating diamond/tetrahedral amorphous carbon composite film. Appl. Surf. Sci. 2011, 257, 3180–3186. [Google Scholar] [CrossRef]
- Kalss, W.; Reiter, A.; Derflinger, V.; Gey, C.; Endrino, J. Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater. 2006, 24, 399–404. [Google Scholar] [CrossRef]
- Sahin, Y.; Sur, G. The effect of Al2O3, TiN and Ti (C,N) based CVD coatings on tool wear in machining metal matrix composites. Surf. Coat. Technol. 2004, 179, 349–355. [Google Scholar] [CrossRef]
- Niu, M.; Bi, Q.; Yang, J.; Liu, W. Tribological performance of a Ni3Al matrix self-lubricating composite coating tested from 25 to 1000 °C. Surf. Coat. Technol. 2012, 206, 3938–3943. [Google Scholar] [CrossRef]
- Shi, X.; Song, S.; Zhai, W.; Wang, M.; Xu, Z.; Yao, J.; Din, A.Q.U.; Zhang, Q. Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 °C. Mater. Des. 2014, 55, 75–84. [Google Scholar] [CrossRef]
- Zhu, S.; Bi, Q.; Yang, J.; Liu, W.; Xue, Q. Ni3Al matrix high temperature self-lubricating composites. Tribol. Int. 2011, 44, 445–453. [Google Scholar] [CrossRef]
- Miyoshi, K. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey; NASA: Washington, DC, USA, 2007.
- Kumar, R.; Antonov, M. Self-lubricating materials for extreme temperature tribo-applications. Mater. Today Proc. 2020, 44, 4583–4589. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Ye, L.; Friedrich, K. Tribological properties of high temperature resistant polymer composites with fine particles. Tribol. Int. 2007, 40, 1170–1178. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Zhang, H.; Friedrich, K. Effect of nanoparticles on the tribological behaviour of short carbon fibre reinforced poly(etherimide) composites. Tribol. Int. 2005, 38, 966–973. [Google Scholar] [CrossRef]
- Li, F.; Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J. Tribological properties of Mo and CaF2 added SiC matrix composites at elevated temperatures. Tribol. Int. 2017, 111, 46–51. [Google Scholar] [CrossRef]
- Cao, Y.; Du, L.; Huang, C.; Liu, W.; Zhang, W. Wear behavior of sintered hexagonal boron nitride under atmosphere and water vapor ambiences. Appl. Surf. Sci. 2011, 257, 10195–10200. [Google Scholar] [CrossRef]
- Huai, W.; Zhang, C.; Wen, S. Graphite-based solid lubricant for high-temperature lubrication. Friction 2020, 9, 1660–1672. [Google Scholar] [CrossRef]
- Reeves, C.J.; Menezes, P.L.; Lovell, M.R.; Jen, T.-C. Tribology of solid lubricants. In Tribology for Scientists and Engineers; Springer: New York, NY, USA, 2013; pp. 447–494. [Google Scholar]
- Aouadi, S.; Paudel, Y.; Simonson, W.; Ge, Q.; Kohli, P.; Muratore, C.; Voevodin, A. Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content. Surf. Coat. Technol. 2009, 203, 1304–1309. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Z.; Dong, H.; Cao, Y.; Yang, H. Study on self-adaptive lubrication mechanism of surface micro-dimple structure filled with multiple lubricants. J. Alloys Compd. 2020, 861, 158479. [Google Scholar] [CrossRef]
- Shen, Q.; Shi, X.; Yang, K.; Zou, J.; Zhai, W.; Huang, Y. Tribological performance of TiAl matrix composites containing silver and V2O5 nanowires at elevated temperatures. RSC Adv. 2016, 6, 56294–56302. [Google Scholar] [CrossRef]
- Zhu, S.; Bi, Q.; Yang, J.; Liu, W. Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites. Tribol. Int. 2011, 44, 1182–1187. [Google Scholar] [CrossRef]
- Zhu, S.; Li, F.; Ma, J.; Cheng, J.; Yin, B.; Yang, J.; Qiao, Z.; Liu, W. Tribological properties of Ni3Al matrix composites with addition of silver and barium salt. Tribol. Int. 2015, 84, 118–123. [Google Scholar] [CrossRef]
- Yang, K.; Shi, X.; Huang, Y.; Wang, Z.; Wang, Y.; Zhang, A.; Zhang, Q. The research on the sliding friction and wear behaviors of TiAl-10 wt%Ag at elevated temperatures. Mater. Chem. Phys. 2017, 186, 317–326. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, X.; Wang, M.; Zhai, W.; Yao, J.; Song, S.; Zhang, Q. Effect of Ag and Ti3SiC2 on tribological properties of TiAl Matrix self-lubricating composites at room and increased temperatures. Tribol. Lett. 2014, 53, 617–629. [Google Scholar] [CrossRef]
- Yao, J.; Shi, X.; Zhai, W.; Ibrahim, A.M.M.; Xu, Z.; Song, S.; Chen, L.; Zhu, Q.; Xiao, Y.; Zhang, Q. Effect of TiB2 on tribological properties of TiAl self-lubricating composites containing Ag at elevated temperature. J. Mater. Eng. Perform. 2014, 24, 307–318. [Google Scholar] [CrossRef]
- Shi, X.; Zhai, W.; Wang, M.; Xu, Z.; Yao, J.; Song, S.; Wang, Y. Tribological behaviors of NiAl based self-lubricating composites containing different solid lubricants at elevated temperatures. Wear 2014, 310, 1–11. [Google Scholar] [CrossRef]
- Song, I.; Park, C.; Choi, H.C. Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv. 2014, 5, 7495–7514. [Google Scholar] [CrossRef] [Green Version]
- Scharf, T.W.; Prasad, S.V. Solid lubricants: A review. J. Mater. Sci. 2012, 48, 511–531. [Google Scholar] [CrossRef]
- Spalvins, T. Lubrication with sputtered MoS2 films: Principles, operation, and limitations. J. Mater. Eng. Perform. 1992, 1, 347–351. [Google Scholar] [CrossRef]
- Yang, J.-F.; Parakash, B.; Hardell, J.; Fang, Q.-F. Tribological properties of transition metal di-chalcogenide based lubricant coatings. Front. Mater. Sci. 2012, 6, 116–127. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; Wang, L. Low humidity-sensitivity of MoS2/Pb nanocomposite coatings. Wear 2016, 350–351, 1–9. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, Z.; Wu, G.; Zhang, G.; Wang, L.; Xue, Q. Preparation and properties of DLC/MoS2 multilayer coatings for high humidity tribology. Mater. Res. Express 2016, 3, 066401. [Google Scholar] [CrossRef]
- Dvorak, S.D.; Wahl, K.J.; Singer, I.L. In situ analysis of third body contributions to sliding friction of a Pb–Mo–S coating in dry and humid air. Tribol. Lett. 2007, 28, 263–274. [Google Scholar] [CrossRef]
- Liu, X.; Shi, X.; Wu, C.; Yang, K.; Huang, Y.; Deng, X.; Yan, Z.; Xue, B. Tribological behavior of M50-MoS2 self-lubricating composites from 150 to 450 °C. Mater. Chem. Phys. 2017, 198, 145–153. [Google Scholar] [CrossRef]
- Wu, J.-S.; Li, J.-F.; Zhang, L.; Qian, Z.-Y. Effects of environment on dry sliding wear behavior of silver–copper based composites containing tungsten disulfide. Trans. Nonferrous Met. Soc. China 2017, 27, 2202–2213. [Google Scholar] [CrossRef]
- Cao, H.; Qian, Z.; Zhang, L.; Xiao, J.; Zhou, K. Tribological behavior of Cu matrix composites containing graphite and tungsten disulfide. Tribol. Trans. 2014, 57, 1037–1043. [Google Scholar] [CrossRef]
- Erdemir, A. A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surf. Coat. Technol. 2005, 200, 1792–1796. [Google Scholar] [CrossRef]
- Dimitrov, V.; Komatsu, T. Classification of Simple Oxides: A polarizability approach. J. Solid State Chem. 2002, 163, 100–112. [Google Scholar] [CrossRef]
- Essa, F.; Zhang, Q.; Huang, X. Investigation of the effects of mixtures of WS2 and ZnO solid lubricants on the sliding friction and wear of M50 steel against silicon nitride at elevated temperatures. Wear 2017, 374-375, 128–141. [Google Scholar] [CrossRef]
- Wang, X.; Feng, X.; Lu, C.; Yi, G.; Jia, J.; Li, H. Mechanical and tribological properties of plasma sprayed NiAl composite coatings with addition of nanostructured TiO2/Bi2O3. Surf. Coat. Technol. 2018, 349, 157–165. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.; Li, C.; Kang, Y.; Hou, X.; Liu, F.; Zhao, S. Improved tribological performance of nickel based high temperature lubricating composites with addition of metallic oxides. Wear 2021, 480–481, 203938. [Google Scholar] [CrossRef]
- Jin, Y.; Kato, K.; Umehara, N. Tribological properties of self-lubricating CMC/Al2O3 pairs at high temperature in air. Tribol. Lett. 1998, 4, 243–250. [Google Scholar] [CrossRef]
- Song, J.; Hu, L.; Qin, B.; Fan, H.; Zhang, Y. Fabrication and tribological behavior of Al2O3/MoS2–BaSO4 laminated composites doped with in situ formed BaMoO4. Tribol. Int. 2018, 118, 329–336. [Google Scholar] [CrossRef]
- Kong, L.; Bi, Q.; Niu, M.; Zhu, S.; Yang, J.; Liu, W. High-temperature tribological behavior of ZrO2–MoS2–CaF2 self-lubricating composites. J. Eur. Ceram. Soc. 2013, 33, 51–59. [Google Scholar] [CrossRef]
- Ouyang, J.; Sasaki, S.; Murakami, T.; Umeda, K. Spark-plasma-sintered ZrO2(Y2O3)-BaCrO4 self-lubricating composites for high temperature tribological applications. Ceram. Int. 2005, 31, 543–553. [Google Scholar] [CrossRef]
- Della Corte, C.; Sliney, H.E. Composition optimization of self-lubricating chromium-carbide-based composite coatings for use to 760 °C. ASLE Trans. 1987, 30, 77–83. [Google Scholar] [CrossRef]
- Han, J.; Jia, J.; Lu, J.; Wang, J. High temperature tribological characteristics of Fe–Mo-based self-lubricating composites. Tribol. Lett. 2009, 34, 193–200. [Google Scholar] [CrossRef]
- Konopka, K.; Roik, T.A.; Gavrish, A.P.; Vitsuk, Y.Y.; Mazan, T. Effect of CaF2 surface layers on the friction behavior of copper-based composite. Powder Met. Met. Ceram. 2012, 51, 363–367. [Google Scholar] [CrossRef]
- Anand, A.; Sharma, S.M. High temperature friction and wear characteristics of Fe–Cu–C based self-lubricating material. Trans. Indian Inst. Met. 2017, 70, 2641–2650. [Google Scholar] [CrossRef]
- Srivyas, P.D.; Charoo, M.S. Tribological characterization of iron-based self-lubricating composite under dry sliding conditions. J. Inst. Eng. India Ser. D 2021, 1–8. [Google Scholar] [CrossRef]
- Liu, S.; Lu, H.; Liu, C.; Liu, X.; Wang, H.; Song, X. Tribological behavior of WC-Co-CaF2 self-lubricating cemented carbides. Int. J. Refract. Met. Hard Mater. 2021, 96, 105492. [Google Scholar] [CrossRef]
- Zhen, J.; Cheng, J.; Tan, H.; Sun, Q.; Zhu, S.; Yang, J.; Liu, W. Investigation of tribological characteristics of nickel alloy-based solid-lubricating composites at elevated temperatures under vacuum. Friction 2020, 9, 990–1001. [Google Scholar] [CrossRef]
- Cui, G.; Liu, H.; Li, S.; Gao, G.; Kou, Z. Design and high-temperature tribological properties of CoCrW with rare earth fluoride composites. J. Mater. Res. Technol. 2020, 9, 2402–2411. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Wang, S.; Sun, Q.; Cheng, J.; Yu, Y.; Yang, J. Tribological properties of h-BN matrix solid-lubricating composites under elevated temperatures. Tribol. Int. 2020, 148, 106333. [Google Scholar] [CrossRef]
- Kimura, Y.; Wakabayashi, T.; Okada, K.; Wada, T.; Nishikawa, H. Boron nitride as a lubricant additive. Wear 1999, 232, 199–206. [Google Scholar] [CrossRef]
- Saito, T.; Honda, F. Chemical contribution to friction behavior of sintered hexagonal boron nitride in water. Wear 2000, 237, 253–260. [Google Scholar] [CrossRef]
- Kuang, W.; Zhao, B.; Yang, C.; Ding, W. Effects of h-BN particles on the microstructure and tribological property of self-lubrication CBN abrasive composites. Ceram. Int. 2020, 46, 2457–2464. [Google Scholar] [CrossRef]
- Song, Y.; He, G.; Wang, Y.; Chen, Y. Tribological behavior of boron nitride nanoplatelet reinforced Ni3Al intermetallic matrix composite fabricated by selective laser melting. Mater. Des. 2019, 165, 107579. [Google Scholar] [CrossRef]
- Hsu, C.-I.; Hou, K.-H.; Ger, M.-D.; Wang, G.-L. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni–P/BN(h) composite coatings. Appl. Surf. Sci. 2015, 357, 1727–1735. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Yu, Z.; Planche, M.-P.; Peyraut, F.; Liao, H.; Lasalle, A.; Allimant, A.; Montavon, G. Microstructural, mechanical and tribological properties of suspension plasma sprayed YSZ/h-BN composite coating. J. Eur. Ceram. Soc. 2018, 38, 4512–4522. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, K.; Yao, C.; Nie, P.; Huang, J.; Li, Z. Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants. Surf. Coat. Technol. 2018, 359, 485–494. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, H.S.; Choi, W.J.; Kwon, H. Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications. Compos. Part B Eng. 2011, 43, 726–738. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, F.; Wang, T. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics 2016, 75, 19–25. [Google Scholar] [CrossRef]
- Theiler, G.; Hübner, W.; Gradt, T.; Klein, P.; Friedrich, K. Friction and wear of PTFE composites at cryogenic temperatures. Tribol. Int. 2002, 35, 449–458. [Google Scholar] [CrossRef]
- Theiler, G.; Gradt, T. Friction and wear of PEEK composites in vacuum environment. Wear 2010, 269, 278–284. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Breidt, C.; Friedrich, K. Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear 2005, 258, 141–148. [Google Scholar] [CrossRef]
- Menezes, P.L.; Rohatgi, P.K.; Lovell, M.R. Self-lubricating behavior of graphite reinforced metal matrix composites. In Green Tribology: Biomimetics, Energy Conservation and Sustainability; Nosonovsky, M., Bhushan, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 445–480. ISBN 978-3-642-23681-5. [Google Scholar]
- Rajak, D.; Kumar, A.; Behera, A.; Menezes, P. Diamond-like carbon (DLC) coatings: Classification, properties, and applications. Appl. Sci. 2021, 11, 4445. [Google Scholar] [CrossRef]
- Moghadam, A.D.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Compos. Part B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int. J. 2016, 19, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Omrani, E.; Moghadam, A.D.; Menezes, P.L.; Rohatgi, P.K. Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency—A review. Int. J. Adv. Manuf. Technol. 2015, 83, 325–346. [Google Scholar] [CrossRef]
- Siddaiah, A.; Kumar, P.; Henderson, A.; Misra, M.; Menezes, P.L. Surface energy and tribology of electrodeposited Ni and Ni–graphene coatings on steel. Lubricants 2019, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Berman, D.; Erdemir, A.; Sumant, A.V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 2013, 59, 167–175. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A new emerging lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, Y.; Lang, H. A novel approach to decrease friction of graphene. Carbon 2017, 118, 233–240. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z.; Zou, K. Friction and wear properties of different types of graphene nanosheets as effective solid lubricants. Langmuir 2015, 31, 7782–7791. [Google Scholar] [CrossRef]
- Kasar, A.; Menezes, P.L. Synthesis and recent advances in tribological applications of graphene. Int. J. Adv. Manuf. Technol. 2018, 97, 3999–4019. [Google Scholar] [CrossRef]
- Kasar, A.K.; Xiong, G.; Menezes, P.L. Graphene-reinforced metal and polymer matrix composites. JOM 2018, 70, 829–836. [Google Scholar] [CrossRef]
- Zhai, W.; Shi, X.; Wang, M.; Xu, Z.; Yao, J.; Song, S.; Wang, Y. Grain refinement: A mechanism for graphene nanoplatelets to reduce friction and wear of Ni3Al matrix self-lubricating composites. Wear 2014, 310, 33–40. [Google Scholar] [CrossRef]
- Wang, L.; Geng, Y.; Tieu, A.K.; Hai, G.; Tan, H.; Chen, J.; Cheng, J.; Yang, J. In-situ formed graphene providing lubricity for the FeCoCrNiAl based composite containing graphite nanoplate. Compos. Part B Eng. 2021, 221, 109032. [Google Scholar] [CrossRef]
- Sliney, H. Solid lubricant materials for high temperatures—A review. Tribol. Int. 1982, 15, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Omrani, E.; Moghadam, A.; Kasar, A.; Rohatgi, P.; Menezes, P. Tribological performance of graphite nanoplatelets reinforced Al and Al/Al2O3 self-lubricating composites. Materials 2021, 14, 1183. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tian, S.; Menezes, P.L.; Xiong, G. Carbon solid lubricants: Role of different dimensions. Int. J. Adv. Manuf. Technol. 2020, 107, 3875–3895. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Q.; Shi, J.; Zhai, G.; Liu, L. Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon 2008, 46, 414–421. [Google Scholar] [CrossRef]
- Mosleh-Shirazi, S.; Akhlaghi, F.; Li, D. Effect of graphite content on the wear behavior of Al/2SiC/Gr hybrid nano-composites respectively in the ambient environment and an acidic solution. Tribol. Int. 2016, 103, 620–628. [Google Scholar] [CrossRef]
- Fusaro, R. Self-lubricating polymer composites and polymer transfer film lubrication for space applications. Tribol. Int. 1990, 23, 105–122. [Google Scholar] [CrossRef] [Green Version]
- Muratore, C.; Voevodin, A.; Hu, J.; Zabinski, J. Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C. Wear 2006, 261, 797–805. [Google Scholar] [CrossRef]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid Lubrication with MoS2: A Review. Lubricants 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Polcar, T.; Cavaleiro, A. Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon. Surf. Coat. Technol. 2011, 206, 686–695. [Google Scholar] [CrossRef]
- Selvi, E.; Ma, Y.; Aksoy, R.; Ertas, A.; White, A. High pressure X-ray diffraction study of tungsten disulfide. J. Phys. Chem. Solids 2006, 67, 2183–2186. [Google Scholar] [CrossRef]
- Bolelli, G.; Candeli, A.; Lusvarghi, L.; Ravaux, A.; Cazes, K.; Denoirjean, A.; Valette, S.; Chazelas, C.; Meillot, E.; Bianchi, L. Tribology of NiCrAlY+Al2O3 composite coatings by plasma spraying with hybrid feeding of dry powder + suspension. Wear 2015, 344-345, 69–85. [Google Scholar] [CrossRef]
- Liu, F.; Yi, G.; Wang, W.; Shan, Y.; Jia, J. Tribological properties of NiCr–Al2O3 cermet-based composites with addition of multiple-lubricants at elevated temperatures. Tribol. Int. 2013, 67, 164–173. [Google Scholar] [CrossRef]
- Bagde, P.; Sapate, S.; Khatirkar, R.; Vashishtha, N. Friction and abrasive wear behaviour of Al2O3-13TiO2 and Al2O3-13TiO2 + Ni graphite coatings. Tribol. Int. 2018, 121, 353–372. [Google Scholar] [CrossRef]
- Gulbiński, W.; Suszko, T. Thin films of MoO3–Ag2O binary oxides—The high temperature lubricants. Wear 2006, 261, 867–873. [Google Scholar] [CrossRef]
- Deng, J.; Cao, T.; Yang, X.; Liu, J.; Sun, J.; Zhao, J. Wear behavior and self tribofilm formation of hot-pressed Al2O3/TiC/CaF2 ceramic composites sliding against cemented carbide. Ceram. Int. 2007, 33, 213–220. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Song, P.; Wang, S.; Wang, Y.; Mao, K. Laminated structure optimization and drawing performance of Al2O3–TiC/Al2O3–TiC–CaF2 self-lubricating laminated ceramic conical die. Ceram. Int. 2015, 41, 12480–12489. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Zhang, P.; Yu, Z.; Li, C.; Xu, P.; Lu, Y. Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold. Surf. Coat. Technol. 2013, 232, 362–369. [Google Scholar] [CrossRef]
- DellaCorte, C.; Zaldana, A.R.; Radil, K.C. A systems approach to the solid lubrication of foil air bearings for oil-free turbomachinery. J. Tribol. 2004, 126, 200–207. [Google Scholar] [CrossRef]
- Faraoun, H.; Grosdidier, T.; Seichepine, J.-L.; Goran, D.; Aourag, H.; Coddet, C.; Zwick, J.; Hopkins, N. Improvement of thermally sprayed abradable coating by microstructure control. Surf. Coat. Technol. 2006, 201, 2303–2312. [Google Scholar] [CrossRef]
- Radcliffe, C. Sealing material developments for reciprocating gas compressors. Seal. Technol. 2005, 2005, 7–11. [Google Scholar] [CrossRef]
- Rodiouchkina, M.; Lind, J.; Pelcastre, L.; Berglund, K.; Rudolphi, K.; Hardell, J. Tribological behaviour and transfer layer development of self-lubricating polymer composite bearing materials under long duration dry sliding against stainless steel. Wear 2021, 484–485, 204027. [Google Scholar] [CrossRef]
- Jianxin, D.; Tongkun, C.; Xuefeng, Y.; Jianhua, L. Self-lubrication of sintered ceramic tools with CaF2 additions in dry cutting. Int. J. Mach. Tools Manuf. 2006, 46, 957–963. [Google Scholar] [CrossRef]
- Niste, V.B.; Ratoi, M.; Tanaka, H.; Xu, F.; Zhu, Y.; Sugimura, J. Self-lubricating Al-WS2 composites for efficient and greener tribological parts. Sci. Rep. 2017, 7, 14665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanar, H.; Purcek, G.; Demirtas, M.; Ayar, H.H. Effect of hexagonal boron nitride (h-BN) addition on friction behavior of low-steel composite brake pad material for railway applications. Tribol. Int. 2021, 107274, in preproof. [Google Scholar] [CrossRef]
- Sliney, E. Tribological Properties of PM212: Composite 1990 Annual Meeting of the Society; NASA: Washington, DC, USA, 1990.
- DellaCorte, C.; Laskowski, J.A. Tribological evaluation of PS300: A new chrome oxide-based solid lubricant coating sliding against Al2O3 from 25° to 650 °C. Tribol. Trans. 1997, 40, 163–167. [Google Scholar] [CrossRef]
- Wang, W. Application of a high temperature self-lubricating composite coating on steam turbine components. Surf. Coat. Technol. 2004, 177–178, 12–17. [Google Scholar] [CrossRef]
- DellaCorte, C.; Edmonds, B.J. NASA PS400: A New High Temperature Solid Lubricant Coating for High Temperature Wear Applications; NASA: Washington, DC, USA, 2009; pp. 1–15.
- Radil, K.; DellaCorte, C. The performance of PS400 subjected to sliding contact at temperatures from 260 to 927 °C. Tribol. Trans. 2016, 60, 957–964. [Google Scholar] [CrossRef]
- Torres, H.; Slawik, S.; Gachot, C.; Prakash, B.; Ripoll, M.R. Microstructural design of self-lubricating laser claddings for use in high temperature sliding applications. Surf. Coat. Technol. 2018, 337, 24–34. [Google Scholar] [CrossRef]
- Gao, H.; Otero-De-La-Roza, A.; Gu, J.; Stone, D.; Aouadi, S.M.; Johnson, E.R.; Martini, A. (Ag,Cu)–Ta–O ternaries as high-temperature solid-lubricant coatings. ACS Appl. Mater. Interfaces 2015, 7, 15422–15429. [Google Scholar] [CrossRef]
- Muratore, C.; Hu, J.; Voevodin, A. Tribological coatings for lubrication over multiple thermal cycles. Surf. Coat. Technol. 2009, 203, 957–962. [Google Scholar] [CrossRef]
- Xiaowei, L.; Jean-Charles, R.; Suyuan, Y. Effect of temperature on graphite oxidation behavior. Nucl. Eng. Des. 2004, 227, 273–280. [Google Scholar] [CrossRef]
- Nechepurenko, A.; Samuni, S. Oxidation protection of graphite by BN coatings. J. Solid State Chem. 2000, 154, 162–164. [Google Scholar] [CrossRef]
- Kim, T.; Singh, D.; Singh, M. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications. Energy Procedia 2015, 69, 900–906. [Google Scholar] [CrossRef] [Green Version]
Conditions | Lower Limit | Upper Limit | References |
---|---|---|---|
Temperature | −269 °C | 1000 °C | [57] |
Pressure | 0.1 MPa | 12 MPa | [58,59] |
Humidity | 10% | 70% | [27] |
Velocity | 0.1 m/s | 3 m/s | [59,60] |
Load | 1 N | 100 N | [61,62] |
Matrix/Alloy | Lubricants | Processing Route | Test Condition/Counter Body | Observation |
---|---|---|---|---|
Ni3Al [24] | 10 wt. % and 20 wt. % Ag | High-energy ball milling (8 h) followed by vacuum hot press sintering at 900 °C (15 min, 35 MPa) | Ball-on-disk at HT; load 10 N; speed 360 r/min/Si3N4 |
|
Ni3Al [53] | Ag–Mo, and BaF2/CaF2 | Vacuum hot press sintering at 1100 °C (30 min, 30 MPa) | Ball-on-disk at HT; load 20 N; sliding speed 0.20 m/s/Si3N4 |
|
Ni3Al [54] | WS2, Ag, and h–BN | High-energy ball milling followed by sintering at 1150 °C (6 min, 30 MPa) in pure Ar | Ball-on-disk at HT; Load 10 N; sliding velocity 0.234 m/s/Si3N4 |
|
Ni3Al [55] | BaF2–CaF –Ag–Cr | Hot press sintering at 900 °C (15 min, 35 MPa) | Ball-on-disk at HT; Load 10 N; sliding velocity 0.188 m/s/Si3N4 |
|
Ni3Al [67] | BaF2–CaF2–Ag–Cr (Cr varied from 10 wt. % to 25 wt. %) | High-energy ball milling followed by hot press sintering at 900 °C (15 min, 35 MPa) | Ball-on-disk-at HT; Load 20 N; sliding velocity 0.19 m/s/Si3N4 |
|
Ni3Al [68] | Ag, BaCrO4, BaMoO4 | Ball milling followed by hot press sintering at 1100 °C (15 min, 35 MPa) powders again heated to 1200 °C for 20 min | Ball-on-disk-at HT; load 20 N; sliding velocity 0.19 m/s/Si3N4 |
|
TiAl [69] | 10 wt. % Ag | Spark plasma sintering (SPS) | Ball-on-disk-at HT; load 12 N; speed 0.8 m/s/Si3N4 |
|
TiAl [22] | 0 wt. %, 5 wt. %, 10 wt. %, 15 wt. % Ag | High-energy ball milling followed by sintering at 1100 °C (10 min, 30 MPa) in pure Ar | Ball-on-disk-at HT; load 10 N; speed 0.23 m/s/Si3N4 |
|
TiAl [66] | 5 wt. % Ag and 0.5 wt. %, 1.5 wt. %, and 2.5 wt. % V2O5 nanowires | Vibration milling followed by SPS at 1150 °C (6 min, 30 MPa) in Ar | Ball-on-disk at HT; load 20 N; sliding velocity 0.35 m/s/Al2O3 |
|
TiAl [70] | Ag and Ti3SiC2 | High-energy ball milling followed by SPS at 1100 °C (10 min, 35 MPa) in pure Ar | Ball on-disk at HT; Load 10 N; sliding velocity 0.23 m/s/Si3N4 |
|
TiAl [71] | 12 wt. % Ag and TiB2 varied between 0 wt. % to 15 wt. % | High-energy ball-milling followed by SPS at 1050 °C (10 min, 35 MPa) in pure Ar | Pin-on-disk-at HT; load 12 N; sliding velocity 0.3 m/s/Si3N4 |
|
NiAl [72] | MoS2, WS2, Ti3SiC2, and PbO | High-energy ball-milling followed by SPS at 1100 °C (5 min, 35 MPa) in pure Ar | Pin-on-disk at HT; Load 10 N; sliding velocity 0.3 m/s/Si3N4 |
|
Matrix/Alloy | Lubricants | Processing Route | Test Condition/Counter Body | Observation |
---|---|---|---|---|
Al2O3 [88] | Ag and CaF2 | Powder metallurgy | Pin-on-disk; load 10 N; sliding velocity 0.168 m/s/Al2O3 |
|
Al2O3 [89] | MoS2–BaSO4 doped with BaMoO4 | Ball milling followed by SPS (1150 °C, 25 MPa, 5 min) | Standard friction and wear tester; linear stroke 1 mm; load 70 N/Al2O3 |
|
SiC [60] | Mo and CaF2 | Planetary ball milling followed by hot press sintering at (1300 °C, 35 MPa, 20 min) | Ball-on-disk at HT; load 5 N; speed 0.10 m/s/SiC |
|
ZrO2 [90] | ZrO2, MoS2 and CaF2 | High-energy ball milling followed by hot press sintering (1200 °C, 42 MPa, 30 min) | Ball-on-disk at HT; load 10 N; speed 0.2 m/s/SiC |
|
ZrO2 [91] | ZrO (Y2O3)–BaCrO4 | Ball milling followed by SPS (1500 °C, 40 MPa, 5–10 min) | Standard friction and wear tester frequency 10 Hz; linear stroke 1 mm; load 10–30 N/Al2O3 |
|
Composition | PV Factors | Temperature (°C ) | CoF | Specific Wear (10−6 mm3/Nm) |
---|---|---|---|---|
PEEK [58] | 1 MPa, 1 m/s | RT | 0.51 | 10.54 |
SCF + graphite/PEEK [58] | 1 MPa; 1 m/s | RT | 0.44 | 0.46 |
2 MPa; 1 m/s | 0.35 | 1.04 | ||
4 MPa; 1 m/s | 0.24 | 0.81 | ||
2 MPa; 2 m/s | 0.28 | 1.12 | ||
1 MPa; 1 m/s | RT | 0.41 | 0.53 | |
2 MPa; 1 m/s | 0.28 | 0.78 | ||
4 MPa; 1 m/s | 0.23 | 5.76 | ||
2 MPa; 2 m/s | 0.24 | 3.73 | ||
PEI [59] | 1 MPa, 1 m/s | RT | 0.61 | 598.67 |
SCF + graphite/PEI [59] | 1 MPa; 1 m/s | RT | 0.56 | 0.77 |
4 MPa; 1 m/s | 0.35 | 1.14 | ||
8 MPa; 1 m/s | 0.22 | 0.73 | ||
12 MPa; 1m/s | 0.25 | 1.34 | ||
4 MPa; 2 m/s | 0.30 | 2.17 | ||
4 MPa; 3 m/s | 0.35 | 39.14 | ||
Nano-TiO2 + SCF + graphite/PEI [59] | 1 MPa; 1 m/s | RT | 0.36 | 0.30 |
4 MPa; 1 m/s | 0.27 | 2.99 | ||
8 MPa; 1 m/s | 0.15 | 1.62 | ||
12 MPa; 1m/s | 0.09 | 1.28 | ||
4 MPa; 2 m/s | 0.16 | 1.12 | ||
4 MPa; 3 m/s | 0.14 | 0.68 | ||
SCF + graphite/PEEK [58] | 1 MPa; 1 m/s | 70 | 0.14 | 2.19 |
1 MPa; 1 m/s | 150 | 0.46 | 11.01 | |
4 MPa; 1 m/s | 150 | 0.44 | 4.66 | |
1 MPa; 2 m/s | 150 | 0.54 | 10.03 | |
ZnS + TiO2+ SCF + graphite/PEEK [58] | 1 MPa; 1 m/s | 70 | 0.08 | 1.04 |
1 MPa; 1 m/s | 150 | 0.15 | 5.38 | |
4 MPa; 1 m/s | 150 | 0.12 | 3.5 | |
1 MPa; 2 m/s | 150 | 0.14 | 6.38 | |
SCF + graphite/PEI [58] | 1 MPa; 1 m/s | 70 | 0.27 | 4.35 |
1 MPa; 1 m/s | 120 | 0.24 | 1.92 | |
4 MPa; 1 m/s | 120 | 0.29 | 2.94 | |
1 MPa; 2 m/s | 120 | 0.29 | 15.28 | |
TiO2 + SCF + graphite/PEI [58] | 1 MPa; 1 m/s | 70 | 0.09 | 1.74 |
1 MPa; 1 m/s | 120 | 0.08 | 1.08 | |
4 MPa; 1 m/s | 120 | 0.1 | 1.56 | |
1 MPa; 2 m/s | 120 | 0.26 | 29.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, M.; Menezes, P.L. Self-Lubricating Materials for Extreme Condition Applications. Materials 2021, 14, 5588. https://doi.org/10.3390/ma14195588
John M, Menezes PL. Self-Lubricating Materials for Extreme Condition Applications. Materials. 2021; 14(19):5588. https://doi.org/10.3390/ma14195588
Chicago/Turabian StyleJohn, Merbin, and Pradeep L. Menezes. 2021. "Self-Lubricating Materials for Extreme Condition Applications" Materials 14, no. 19: 5588. https://doi.org/10.3390/ma14195588
APA StyleJohn, M., & Menezes, P. L. (2021). Self-Lubricating Materials for Extreme Condition Applications. Materials, 14(19), 5588. https://doi.org/10.3390/ma14195588