Rheology of Alkali-Activated Blended Binder Mixtures
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Investigated Parameters and Mix Proportions
2.3. Test Methods and Specimen Preparation
3. Results and Discussion
3.1. Results
3.2. Flowability
3.3. Rheology Results and Analysis
3.3.1. Effect of AS/B
3.3.2. Effect of SS/SH
3.3.3. Effect of TW/TS
3.3.4. Effect of Binder Content
3.3.5. Effect of SP and Borax
3.3.6. Effect of SF
3.3.7. Thixotropy
3.3.8. Rheology and Flowability
4. Conclusions
- Both yield stress and plastic viscosity decrease with the increase of binder content and water to binder ratio. Binder content has a more substantial effect on both rheology parameters.
- An increase in sodium silicate to sodium hydroxide ratio increases the yield stress. This is due to the formation of early C-S-H products from the reaction of silicate ions from the alkaline solution and calcium ions from the slag.
- Borax is an effective admixture for reducing yield stress. A 2% borax relative to the total binder reduced the yield stress by 49%. This is due to the additional calcium-based borate layer that borax forms at the early stage of the reaction.
- The effect of silica fume on rheology depends on its dosage. Up to 15% replacement of the binder, silica fume decreased the yield stress of the mix due to its lubrication effect; however, further increase resulted in higher water demand and hence higher yield stress.
- Plastic viscosity decreases with the increase of silica fume. This was observed despite the decrease in the flow value when silica fume increased, showing that addition of silica fume is an effective way to reduce viscosity.
- Thixotropic area significantly increases with the decrease in binder content, and decreases with the increase in water content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrmann, A.; Koenig, A.; Dehn, F. Structural concrete based on alkali-activated binders: Terminology, reaction mechanisms, mix designs and performance. Struct. Concr. 2018, 19, 918–929. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Juenger, M.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.; Cheng, Y.-B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Xie, T.; Visintin, P.; Zhao, X.; Gravina, R. Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach. Constr. Build. Mater. 2020, 256, 119380. [Google Scholar] [CrossRef]
- Tekle, B.H.; Khennane, A.; Kayali, O. Bond behaviour of GFRP reinforcement in alkali activated cement concrete. Constr. Build. Mater. 2017, 154, 972–982. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, B.; Bai, T.; Wang, H.; Du, F.; Zhang, Y.; Cai, L.; Jiang, C.; Wang, W. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 2019, 224, 930–949. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Res. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Moeini, M.A.; Hosseinpoor, M.; Yahia, A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Constr. Build. Mater. 2020, 257, 119551. [Google Scholar] [CrossRef]
- Li, L.; Lu, J.-X.; Zhang, B.; Poon, C.-S. Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes. Constr. Build. Mater. 2020, 258, 120381. [Google Scholar] [CrossRef]
- Criado, M.; Palomo, A.; Fernández-Jiménez, A.; Banfill, P.F.G. Alkali activated fly ash: Effect of admixtures on paste rheology. Rheol. Acta 2009, 48, 447–455. [Google Scholar] [CrossRef]
- Sitarz, M.; Urban, M.; Hager, I. Rheology and Mechanical Properties of Fly Ash-Based Geopolymer Mortars with Ground Granulated Blast Furnace Slag Addition. Energies 2020, 13, 2639. [Google Scholar] [CrossRef]
- Vance, K.; Dakhane, A.; Sant, G.; Neithalath, N. Observations on the rheological response of alkali activated fly ash suspensions: The role of activator type and concentration. Rheol. Acta 2014, 53, 843–855. [Google Scholar] [CrossRef]
- Romagnoli, M.; Sassatelli, P.; Lassinantti Gualtieri, M.; Tari, G. Rheological characterization of fly ash-based suspensions. Constr. Build. Mater. 2014, 65, 526–534. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Wang, D.; Liu, Z.; Xie, F. Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content. Constr. Build. Mater. 2018, 187, 674–680. [Google Scholar] [CrossRef]
- Puertas, F.; Varga, C.; Alonso, M.M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem. Concr. Res. 2014, 53, 279–288. [Google Scholar] [CrossRef]
- Awoyera, P.; Adesina, A. A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud. Constr. Mater. 2019, 11, e00268. [Google Scholar] [CrossRef]
- Fang, G.; Ho, W.K.; Tu, W.; Zhang, M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.K.; Lee, H.K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Palacios, M.; Banfill, P.F.G.; Puertas, F. Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture. ACI Mater. J. 2008, 105, 140–148. [Google Scholar]
- Palacios, M.; Puertas, F. Stability of superplasticizer and shrinkage-reducing admixtures Stability of superplasticizer and shrinkage-reducing admixtures in high basic media. Mater. Constr. 2004, 54, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Yuqi, Z.; Qiang, W. Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems. Constr. Build. Mater. 2021, 272, 121647. [Google Scholar] [CrossRef]
- EN 450-1. Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria, German version EN 450-1:2012; CEN: Brussels, Belgium, 2012. [Google Scholar]
- EN 15167-1. Ground Granulated Blast Furnace Slag for Use in Concrete, Mortar and Grout—Part 1: Definitions, Specifications and Conformity Criteria; CEN: Brussels, Belgium, 2006. [Google Scholar]
- EN 13263-1. Silica Fume for Concrete—Part 1: Definitions, Requirements and Conformity Criteria; CEN: Brussels, Belgium, 2005. [Google Scholar]
- Tekle, B.H.; Holschemacher, K.; Löber, P.; Heiden, B. Mechanical Behavior and Frost-Resistance of Alkali-Activated Cement Concrete with Blended Binder at Ambient Curing Condition. Buildings 2021, 11, 52. [Google Scholar] [CrossRef]
- Tekle, B.H.; Hertwig, L.; Holschemacher, K. Setting Time and Strength Monitoring of Alkali-Activated Cement Mixtures by Ultrasonic Testing. Materials 2021, 14, 1889. [Google Scholar] [CrossRef]
- EN 1015-3. Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table); CEN: Brussels, Belgium, 1999. [Google Scholar]
- Puertas, F.; Alonso, M.; Gismera, S.; Lanzón, M.; Blanco-Varela, M.T. Rheology of Cementitious Materials: Alkali-Activated Materials or Geopolymers. MATEC Web Conf. 2018, 149, 1002. [Google Scholar] [CrossRef]
- Haist, M.; Link, J.; Nicia, D.; Leinitz, S.; Baumert, C.; von Bronk, T.; Cotardo, D.; Eslami Pirharati, M.; Fataei, S.; Garrecht, H.; et al. Interlaboratory study on rheological properties of cement pastes and reference substances: Comparability of measurements performed with different rheometers and measurement geometries. Mater. Struct. 2020, 53, 92. [Google Scholar] [CrossRef]
- Gugulothu, V.; Gunneswara Rao, T.D. Effect of Binder Content and Solution/Binder Ratio on Alkali-Activated Slag Concrete Activated with Neutral Grade Water Glass. Arab. J. Sci. Eng. 2020, 45, 8187–8197. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. (1980–2015) 2014, 62, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Correa-Yepes, J.A.; Rojas-Reyes, N.R.; Tobón, J.I. Effect of fly ash and silica fume on rheology, compressive strength and self-compacting in cement mixtures. DYNA 2018, 85, 59–68. [Google Scholar] [CrossRef]
- Memon, F.A.; Nuruddin, M.F.; Shafiq, N. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete. Int. J. Miner. Metall. Mater. 2013, 20, 205–213. [Google Scholar] [CrossRef]
- Bignozzi, M.C.; Manzi, S.; Natali, M.E.; Rickard, W.D.; van Riessen, A. Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio. Constr. Build. Mater. 2014, 69, 262–270. [Google Scholar] [CrossRef]
- Roussel, N.; Lemaître, A.; Flatt, R.J.; Coussot, P. Steady state flow of cement suspensions: A micromechanical state of the art. Cem. Concr. Res. 2010, 40, 77–84. [Google Scholar] [CrossRef]
- Xie, J.; Cui, X.; Guo, N.; Liu, G. Influence of Mix Proportions on Rheological Properties, Air Content of Wet Shotcrete—A Case Study. Appl. Sci. 2021, 11, 3550. [Google Scholar] [CrossRef]
- Dai, X.; Aydin, S.; Yardimci, M.Y.; Lesage, K.; de Schutter, G. Influence of water to binder ratio on the rheology and structural Build-up of Alkali-Activated Slag/Fly ash mixtures. Constr. Build. Mater. 2020, 264, 120253. [Google Scholar] [CrossRef]
- Koehler, E.P.; Fowler, D.W. Development of a Portable Rheometer for Fresh Portland Cement Concrete; Research report ICAR–105-3F; International Center for Aggregates Research, The University of Texas at Austin: Austin, TX, USA, 2004. [Google Scholar]
- Holschemacher, K.; Tekle, B.H. Review and Experimental Investigation of Retarder for Alkali-Activated Cement. In Proceedings of the 75th Rilem Annual Week and International Conference on Advances in Sustainable Construction Materials and Structures, Mérida, Mexico, 29 August–3 September 2021. [Google Scholar]
- Oderji, S.Y.; Chen, B.; Shakya, C.; Ahmad, M.R.; Shah, S.F.A. Influence of superplasticizers and retarders on the workability and strength of one-part alkali-activated fly ash/slag binders cured at room temperature. Constr. Build. Mater. 2019, 229, 116891. [Google Scholar] [CrossRef]
- Revathi, T.; Jeyalakshmi, R. XPS, 29Si, 27Al, 11B MAS -NMR, ATR-IR and FESEM characterization of geopolymer based on borax modified water glass activated Fly ash-GGBS blend. Mater. Res. Express 2019, 6, 85337. [Google Scholar] [CrossRef]
- Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. Effect of constituents on rheological properties of fresh concrete—A review. Cem. Concr. Compos. 2017, 83, 146–159. [Google Scholar] [CrossRef]
- Benaicha, M.; Roguiez, X.; Jalbaud, O.; Burtschell, Y.; Alaoui, A.H. Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of self compacting concrete. Constr. Build. Mater. 2015, 84, 103–110. [Google Scholar] [CrossRef]
- Chidiac, S.; Habibbeigi, F.; Chan, D. Slump and Slump Flow for Characterizing Yield Value of Fresh Concrete. ACI Mater. J. 2006, 103, 413. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Schneider, K.; Brameshuber, W. Mineral-based matrices for textile-reinforced concrete. In Textile Fibre Composites in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 25–43. ISBN 9781782424468. [Google Scholar]
- Neophytou, M.; Pourgouri, S.; Kanellopoulos, A.; Petrou, M.; Ioannou, I.; Georgiou, G.; Alexandrou, A. Determination of the rheological parameters of self-compacting concrete matrix using slump flow test. Appl. Rheol. 2010, 20, 62402. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Compos. Part B Eng. 2017, 117, 26–34. [Google Scholar] [CrossRef]
- Roussel, N. Understanding the Rheology of Concrete; Woodhead: Oxford, UK, 2012; ISBN 9780857090287. [Google Scholar]
- ACI 238.2T-14. Concrete Thixotropy: TechNote; American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Felekoglu, B. Rheological behaviour of self-compacting micro concrete. Indian Acad. Sci. 2014, 39, 1471–1495. [Google Scholar] [CrossRef] [Green Version]
- Assaad, J.; Khayat, K.H. Assessment of Thixotropy of Self-Consolidating Concrete and Concrete-Equivalent-Mortar—Effect of Binder Composition and Content. ACI Mater. J. 2004, 101, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Ahari, R.S.; Erdem, T.K.; Ramyar, K. Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials. Cem. Concr. Compos. 2015, 59, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Roussel, N. Correlation between Yield Stress and Slump: Comparison between Numerical Simulations and Concrete Rheometers Results. Mater. Struct. 2007, 39, 501–509. [Google Scholar] [CrossRef]
- Nehdi, M.; Al-Martini, S. Coupled Effects of High Temperature, Prolonged Mixing Time, and Chemical Admixtures on Rheology of Fresh Concrete. ACI Mater. J. 2009, 106, 231. [Google Scholar] [CrossRef]
Composition | FA (%) | GGBS (%) | SF * (%) |
---|---|---|---|
SiO2 | 49.79 | 34.48 | 93.81 |
Al2O3 | 26.71 | 11.48 | 0.48 |
Fe2O3 | 8.57 | - | 1.49 |
MgO | 2.47 | 7.08 | 0.46 |
CaO | 4.34 | 42.43 | 0.30 |
K2O | 3.36 | 0.66 | 0.77 |
Na2O | 1.28 | 0.56 | 0.42 |
SO3 | 1.49 | 2.17 | 0.20 |
TiO2 | 1.23 | 1.14 | - |
Specific surface area (m2/g) | 0.45 | 0.46 | 19.40 |
Specific gravity (g/cm3) | 2.28 | 2.91 | 2.20 |
Mix No. | Binder (kg/m3) | Sand (kg/m3) | AS/B | SS/SH | TW/TS | SP (%) | Borax (%) |
---|---|---|---|---|---|---|---|
AAC-1 | 550 | 1104 | 0.14 | 2.5 | 0.55 | - | - |
AAC-2 | 650 | 1159 | 0.14 | 2.5 | 0.35 | - | - |
AAC-3 | 750 | 1195 | 0.18 | 2.5 | 0.25 | - | - |
TW/TS.40 | 650 | 1062 | 0.14 | 2.5 | 0.40 | - | - |
TW/TS.45 | 650 | 966 | 0.14 | 2.5 | 0.45 | - | - |
SS/SH-1.5 | 650 | 1157 | 0.14 | 1.5 | 0.35 | - | - |
SS/SH-2.0 | 650 | 1158 | 0.14 | 2.0 | 0.35 | - | - |
AS/B.18 | 650 | 1117 | 0.18 | 2.5 | 0.35 | - | - |
AS/B.22 | 650 | 1074 | 0.22 | 2.5 | 0.35 | - | - |
B750 | 750 | 941 | 0.14 | 2.5 | 0.35 | - | - |
B550 | 550 | 1377 | 0.14 | 2.5 | 0.35 | - | - |
SP-Borax | 650 | 1159 | 0.14 | 2.5 | 0.35 | 4 | 2 |
SP | 650 | 1159 | 0.14 | 2.5 | 0.35 | 4 | - |
Borax | 650 | 1159 | 0.14 | 2.5 | 0.35 | - | 2 |
SF15 | SF (15) | 1159 | 0.14 | 0.14 | 2.5 | 0.35 | - |
SF25 | SF (25) | 1159 | 0.14 | 0.14 | 2.5 | 0.35 | - |
Mix No. | Flow (mm) | Yield Torque (N·mm) | Viscosity (N·mm·min) | Yield Stress (Pa) [31] | Viscosity (Pa·s) [31] |
---|---|---|---|---|---|
AAC-1 | 310 | 1.55 | 0.05 | 16.48 | 0.67 |
AAC-2 | 245 | 7.35 | 0.41 | 78.13 | 5.51 |
AAC-3 | 210 | 6.84 | 1.74 | 72.71 | 23.36 |
TW/TS.4 | 280 | 4.18 | 0.18 | 44.43 | 2.42 |
TW/TS.45 | 300 | 1.36 | 0.07 | 14.46 | 0.94 |
SS/SH-1.5 | 240 | 4.32 | 0.50 | 45.92 | 6.71 |
SS/SH-2 | 245 | 4.87 | 0.49 | 51.77 | 6.58 |
AS/B.18 | 265 | 5.19 | 0.43 | 55.17 | 5.77 |
AS/B.22 | 280 | 5.17 | 0.39 | 54.96 | 5.24 |
B750 | 280 | 3.08 | 0.26 | 32.74 | 3.49 |
B550 | 210 | 21.64 | 0.94 | 230.03 | 12.62 |
SP-Borax | 275 | 2.74 | 0.28 | 29.13 | 3.76 |
SP | 275 | 3.93 | 0.30 | 41.78 | 4.03 |
Borax | 265 | 3.73 | 0.32 | 39.65 | 4.30 |
SF15 | 200 | 4.49 | 0.22 | 47.73 | 2.95 |
SF25 | 145 | 7.74 | 0.20 | 82.28 | 2.69 |
Mix | Drop in Torque (N·mm) | Thixotropic Area (N·mm/min.) |
---|---|---|
AAC-1 | 2.4 | 677 |
AAC-2 | 22.3 | 1624 |
AAC-3 | 75.2 | 6314 |
TW/TS.4 | 5.0 | 354 |
TW/TS.45 | 1.5 | 124 |
SS/SH-1.5 | 5.7 | 957 |
SS/SH-2 | 2.3 | 571 |
AS/B.18 | 12.1 | 849 |
AS/B.22 | 12.2 | 1252 |
B750 | 7.5 | 632 |
B550 | 13.1 | 2314 |
SP-Borax | 8.9 | 838 |
SP | 7.5 | 740 |
Borax | 12.0 | 1258 |
SF15 | 5.6 | 557 |
SF25 | 4.9 | 694 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tekle, B.H.; Hertwig, L.; Holschemacher, K. Rheology of Alkali-Activated Blended Binder Mixtures. Materials 2021, 14, 5405. https://doi.org/10.3390/ma14185405
Tekle BH, Hertwig L, Holschemacher K. Rheology of Alkali-Activated Blended Binder Mixtures. Materials. 2021; 14(18):5405. https://doi.org/10.3390/ma14185405
Chicago/Turabian StyleTekle, Biruk Hailu, Ludwig Hertwig, and Klaus Holschemacher. 2021. "Rheology of Alkali-Activated Blended Binder Mixtures" Materials 14, no. 18: 5405. https://doi.org/10.3390/ma14185405
APA StyleTekle, B. H., Hertwig, L., & Holschemacher, K. (2021). Rheology of Alkali-Activated Blended Binder Mixtures. Materials, 14(18), 5405. https://doi.org/10.3390/ma14185405