Enhancing Strain Capacity by the Introduction of Pearlite in Bainite and Polygonal Ferrite Dual-Phase Pipeline Steel
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Microstructural Characterization and Mechanical Property Test
2.3. Work-Hardening Behavior Analysis
3. Results
3.1. Microstructures
3.2. Tensile Properties
3.3. Work Hardening Behavior
3.4. Differential C-J Analysis
3.5. Fracture Morphology
4. Discussion
- Stage I: Deformation of soft ferrite matrix;
- Stage II: Simultaneous deformation of soft and hard phases;
- Stage III: Dynamic recovery in ferrite.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, X.B.; Yan, W.; Wang, W.; Zhao, L.Y.; Shan, Y.Y.; Yang, K. Effect of Microstructure on Hydrogen Induced Cracking Behavior of a High Deformability Pipeline Steel. J. Iron Steel Res. 2015, 22, 937–942. [Google Scholar] [CrossRef]
- Vazouras, P.; Karamanos, S.A.; Dakoulas, P. Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dyn. Earthq. Eng. 2012, 41, 164–180. [Google Scholar] [CrossRef]
- Muneer, B.; Ehab, E.; Mahmoud, S.; Abdulhakim, A.; Khaled, A. Mechanical properties, microstructure and toughness assessment of a X70 pipeline steel. Mater. Test. 2015, 57, 897–903. [Google Scholar]
- Cunjiang, T.; Cheng Jia, S.; Hailong, G.; Xuemin, W. Strain Hardening Behavior and Stress Ratio of High Deformability Pipeline Steel with Ferrite/Bainite Multi-phase Microstructure. Chin. J. Mater. Res. 2016, 30, 409–417. [Google Scholar]
- Shi, X.B.; Yan, W.; Wang, W.; Yang, Z.G.; Ren, Y.; Shan, Y.Y.; Yang, K. Effect of Cu Alloying on Strain Capacity of Cu-bearing Pipeline Steels. ISIJ Int. 2019, 60, 792–798. [Google Scholar] [CrossRef]
- Ishikawa, N.; Yasuda, K.; Sueyoshi, H.; Endo, S.; Ikeda, H.; Morikawa, T.; Higashida, K. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method. Acta Mater. 2015, 97, 257–268. [Google Scholar] [CrossRef]
- Zhao, Z.T.; Wang, X.S.; Qiao, G.Y.; Zhang, S.Y.; Xiao, F.R. Effect of bainite morphology on deformation compatibility of mesostructure in ferrite/bainite dual-phase steel: Mesostructure-based finite element analysis. Mater. Des. 2019, 180, 107870. [Google Scholar] [CrossRef]
- Li, H.; Gao, S.; Tian, Y.; Terada, D.; Shibata, A.; Tsuji, N. Influence of Tempering on Mechanical Properties of Ferrite and Martensite Dual Phase Steel. Mater. Today: Proc. 2015, 2, S667–S671. [Google Scholar] [CrossRef]
- Cannmo, P.; Runesson, K.; Ristinmaa, M. Modelling of plasticity and damage in a polycrystalline microstructure. Int. J. Plast. 1995, 11, 949–970. [Google Scholar] [CrossRef]
- Sirinakorn, T.; Wongwises, S.; Uthaisangsuk, V. A study of local deformation and damage of dual phase steel. Mater. Des. 2014, 64, 729–742. [Google Scholar] [CrossRef]
- Oleg, D.; Wadsworth, J. Superplasticity-Recent Advances and Future Directions. Prog. Mater. Sci. 1989, 33, 169–221. [Google Scholar]
- Bo, G.; Rong, H.; Zhiyi, P.; Xuefei, C.; Hao, Z. Strengthening and ductilization of laminate dual-phase steels with high martensite content. J. Mater. Sci. Technol. 2020, 65, 29–37. [Google Scholar]
- Li, S.C.; Guo, C.Y.; Hao, L.L.; Kang, Y.L.; An, Y.G. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests. Mater. Sci. Eng. A 2019, 759, 624–632. [Google Scholar] [CrossRef]
- Sudo, M.; Iwai, T. Deformation Behavior and Mechanical Properties of Ferrite-Bainite-Martensite (Triphase) Steel. Trans. Iron Steel Inst. Jpn. 1983, 23, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.S.; Reichel, U.; Dahl, W. Effect of bainite on the mechanical properties of dual-phase steels. Steel Res. 1987, 58, 186–190. [Google Scholar] [CrossRef]
- Ghorabaei, A.S.; Banadkouki, S.G. Abnormal mechanical behavior of a medium-carbon steel under strong ferrite-pearlite-martensite triple-phase microstructures. Mater. Sci. Eng. A 2017, 700, 562–573. [Google Scholar] [CrossRef]
- Maccagno, T.M.; Jonas, J.J.; Yue, S.; McCrady, B.J.; Slobodian, R.; Deeks, D. Determination of Recrystallization Stop Temperature from Rolling Mill Logs and Comparison with Laboratory Simulation Results. ISIJ Int. 1994, 34, 917–922. [Google Scholar] [CrossRef]
- GB/T 228.1-2010. Metallic materials—Tensile testing—Part 1: Method of test at room temperature; SAC: Beijing, China, 2010.
- Zhang, J.; Ding, H.; Zhao, J.W. Effect of Pre-Quenching Process on Microstructure and Mechanical Properties in a Nb-Microalloyed Low Carbon Q-P Steel. Mater. Sci. Forum 2015, 816, 729–735. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Gao, G.; Zhang, H.; Tan, Z.; Misra, R.; Bai, B. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process. Mater. Sci. Eng. A 2016, 661, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Chattopadhyay, P.P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J. Mater. Sci. 2009, 44, 2957–2965. [Google Scholar] [CrossRef]
- Sun, M.Y.; Wang, X.L.; Wang, Z.Q.; Wang, X.M.; Li, X.C.; Yan, L. The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels. Mater. Sci. Eng. A 2020, 771, 138668. [Google Scholar] [CrossRef]
- Chen, Y.W.; Tsai, Y.T.; Tung, P.Y.; Tsai, S.P.; Yang, J.R. Phase quantification in low carbon Nb-Mo bearing steel by electron backscatter diffraction technique coupled with kernel average misorientation. Mater. Charact. 2018, 139, 49–58. [Google Scholar] [CrossRef]
- Tu, X.Y.; Shi, X.B.; Shan, Y.Y.; Yan, W.; Shi, Q.Q.; Li, Y.F.; Li, C.S.; Yang, K. Tensile deformation damage behavior of a high deformability pipeline steel with a ferrite and bainite microstructure. Mater. Sci. Eng. A 2020, 793, 139889. [Google Scholar] [CrossRef]
- Cottrell, A.H.; Bilby, B.A. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 1949, 62, 49–61. [Google Scholar] [CrossRef]
- Sachdev, A.K. Effect of retained austenite on the yielding and deformation behavior of a dual phase steel. Acta Metall. 1983, 31, 2037–2042. [Google Scholar] [CrossRef]
- Jin, J.E.; Lee, Y.K. Strain hardening behavior of a Fe-18Mn-0.6C-1.5Al TWIP steel. Mater. Sci. Eng. A 2009, 527, 157–161. [Google Scholar] [CrossRef]
- Mao, C.L.; Liu, C.X.; Yu, L.M. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures. Mater. Sci. Eng. A 2018, 725, 283–289. [Google Scholar] [CrossRef]
- Zhou, T.; Hao, Y.; Wang, S.Y.; Yu, H. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism. Mater. Sci. Eng. A 2016, 658, 150–158. [Google Scholar] [CrossRef]
- Ohata, M.; Toyoda, M. Damage concept for evaluating ductile cracking of steel structure subjected to large-scale cyclic straining. Sci. Technol. Adv. Mater. 2004, 5, 241–249. [Google Scholar] [CrossRef]
- Ramos, L.F.; Matlock, D.K.; Krauss, G. On the deformation behavior of dual-phase steels. Metall. Trans. A 1979, 10, 259–261. [Google Scholar] [CrossRef]
- Lloyd, D.J. The Work Hardening of some Commercial Al Alloys. Mater. Sci. Forum 2006, 519, 55–62. [Google Scholar] [CrossRef]
- Chiang, J.; Lawrence, B.; Boyd, J.D.; Pilkey, A.K. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater. Sci. Eng. A 2011, 528, 4516–4521. [Google Scholar] [CrossRef]
- Dini, G.; Najafizadeh, A.; Ueji, R.; Monir-Vaghefi, S. Tensile deformation behavior of high manganese austenitic steel: The role of grain size. Mater. Des. 2010, 31, 3395–3402. [Google Scholar] [CrossRef]
- Marion, C.; Yoshitaka, A.; Dirk, P.; Dierk, R. Deformation and fracture mechanisms in fine and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011, 59, 658–670. [Google Scholar]
- Zare, A.; Ekrami, A. Influence of martensite volume fraction on tensile properties of triple phase ferrite-bainite-martensite steels. Mater. Sci. Eng. A 2011, 530, 440–445. [Google Scholar] [CrossRef]
- Zhang, J.; Di, H.; Deng, Y.; Misra, R. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater. Sci. Eng. A 2015, 627, 230–240. [Google Scholar] [CrossRef]
- Zhang, H.; Ponge, D.; Raabe, D. Designing quadplex (four-phase) microstructures in an ultrahigh carbon steel. Mater. Sci. Eng. A 2014, 612, 46–53. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, M.; Dong, Y.; Misra, R.D.K.; Du, Y.; Wu, H.Y.; Du, L.X. On the structure-property relationship in a novel 1000 MPa hot-rolled TRIP steel with strain-assisted ferrite transformation. Mater. Sci. Eng. A 2021, 821, 141594. [Google Scholar] [CrossRef]
- Militzer, M.; Poole, W.J.; Essadiqi, E. Proceedings of the International Symposium on Transformation and Deformation Mechanisms in Advanced High Strength Steels; CIM: Montreal, QC, Canada, 2003; pp. 7–20. [Google Scholar]
- Chen, S.H.; Wang, Y.T.; Lin, Y.C.; Huang, C.Y.; Yang, J.R.; Yen, H.W. Microstructure and mechanical behaviors of GPa-grade TRIP steels enabled by hot-rolling processes. Mater. Sci. Eng. A 2019, 761, 138005. [Google Scholar] [CrossRef]
- Matsumura, O.; Sakuma, Y.; Takechi, H. Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel. Trans. Iron Steel Inst. Jpn. 1987, 27, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.V. The solid particle erosion behavior of steel as a function of microstructure. Wear 1981, 68, 269–287. [Google Scholar] [CrossRef]
- Takahashi, T.; Nagumo, M. Flow Stress and Work-Hardening of Pearlitic Steel. Trans. Jpn. Inst. Met. 1970, 11, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Langford, G. Deformation of pearlite. Metall. Trans. A 1977, 8, 861–875. [Google Scholar] [CrossRef]
- Archie, F.; Li, X.; Zaefferer, S. Micro-damage initiation in ferrite-martensite DP microstructures: A statistical characterization of crystallographic and chemical parameters. Mater. Sci. Eng. A 2017, 701, 302–313. [Google Scholar] [CrossRef]
- Nakanishi, D.; Kawabata, T.; Aihara, S. Brittle crack propagation resistance inside grain and at high angle grain boundary in 3% Si-Fe alloy. Acta Mater. 2018, 144, 768–776. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Al | N | Cr | Cu + Ni | Nb + V + Ti + Mo |
---|---|---|---|---|---|---|---|---|---|
0.06 | 0.22 | 1.6 | 0.012 | 0.002 | 0.03 | 0.007 | 0.11 | 0.02 | 0.126 |
Microstructure | Yield Strength/MPa | Ultimate Tensile Strength (UTS)/MPa | Yield Ratio | Work-Hardening Exponent(n) | Total Elongation (TEL)/% |
---|---|---|---|---|---|
B | 513 | 615 | 0.83 | 0.09 | 25.0 |
B + PF | 486 | 593 | 0.82 | 0.10 | 27.0 |
B + PF + P | 455 | 588 | 0.77 | 0.12 | 31.0 |
Sample | Work Hardening Exponent, n | |||
---|---|---|---|---|
0.5–1.5% | 1–6% | 5–12% | 10–20% | |
Single-phase (B) | 0.05 | 0.11 | 0.09 | 0.05 |
Dual phase (B + PF) | 0.13 | 0.13 | 0.11 | 0.08 |
Triple-phase (B + PF + P) | 0.1 | 0.15 | 0.14 | 0.12 |
Sample | Strength Coefficient, K/MPa | |||
---|---|---|---|---|
0.5–1.5% | 1–6% | 5–12% | 10–20% | |
Single-phase (B) | 691 | 869 | 841 | 760 |
Dual phase (B + PF) | 890 | 884 | 849 | 780 |
Triple-phase (B + PF + P) | 746 | 907 | 897 | 866 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, X.; Ren, Y.; Shi, X.; Li, C.; Yan, W.; Shan, Y.; Yang, K. Enhancing Strain Capacity by the Introduction of Pearlite in Bainite and Polygonal Ferrite Dual-Phase Pipeline Steel. Materials 2021, 14, 5358. https://doi.org/10.3390/ma14185358
Tu X, Ren Y, Shi X, Li C, Yan W, Shan Y, Yang K. Enhancing Strain Capacity by the Introduction of Pearlite in Bainite and Polygonal Ferrite Dual-Phase Pipeline Steel. Materials. 2021; 14(18):5358. https://doi.org/10.3390/ma14185358
Chicago/Turabian StyleTu, Xingyang, Yi Ren, Xianbo Shi, Changsheng Li, Wei Yan, Yiyin Shan, and Ke Yang. 2021. "Enhancing Strain Capacity by the Introduction of Pearlite in Bainite and Polygonal Ferrite Dual-Phase Pipeline Steel" Materials 14, no. 18: 5358. https://doi.org/10.3390/ma14185358
APA StyleTu, X., Ren, Y., Shi, X., Li, C., Yan, W., Shan, Y., & Yang, K. (2021). Enhancing Strain Capacity by the Introduction of Pearlite in Bainite and Polygonal Ferrite Dual-Phase Pipeline Steel. Materials, 14(18), 5358. https://doi.org/10.3390/ma14185358