Fatigue Performance of Metal–Composite Friction Spot Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Friction Spot Joining (FSpJ)
2.2.2. Mechanical Testing
2.2.3. Microscopy
2.3. Description of the Fatigue Fitting Models
2.3.1. Exponential and Power-Law Models
2.3.2. Wear-Out Model
3. Results and Discussion
3.1. Fatigue Life Analysis of the Friction Spot Joints
3.2. Influence of Surface Pre-Treatment
3.3. Residual Strength
3.4. Failure Mode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Fatigue Data from the S–N Curves
Surface Pre-Treatment | Exponential (Equation (1)) | Power Law (Equation (2)) | Wear-Out (Equation (4)) | |||||
---|---|---|---|---|---|---|---|---|
a | b | c | d | α | 𝛽 | C | S | |
SB | 7.16669 | −0.00256 | 25.25512 | −6.91255 | 17.21220 | 4615.33 | 0.43191 | 0.15775 |
SB + CC | 7.90061 | −0.00210 | 31.81210 | −8.53354 | 14.36530 | 4587.83 | 0.90861 | 0.09893 |
PAA | 8.83116 | −0.00382 | 37.1902 | −10.72974 | 6.85346 | 4210.72 | 0.65316 | 0.12544 |
PAA-P | 6.92999 | −0.00073 | 24.9976 | −5.85888 | 7.40972 | 15653 | 0.70951 | 0.15185 |
Appendix B. Validation of the Fatigue Models
Surface Pre-Treatment | Exponential | Power Law | ||
---|---|---|---|---|
Linearity Index | Fp | Linearity Index | Fp | |
SB | 4.46024 | 5.1174 | 0.59666 | 5.1174 |
SB + CC | 3.18467 | 4.7571 | 3.33068 | 4.7571 |
PAA | 6.31900 | 4.7374 | 2.89993 | 4.7374 |
PAA-P | 0.11993 | 4.4590 | 0.03010 | 4.4590 |
Surface Pre-Treatment | DF | HKW | Hcr |
---|---|---|---|
SB | 3 | 5.47 | 7.81 |
SB + CC | 5 | 10.28 | 11.07 |
PAA | 4 | 9.26 | 9.49 |
PAA-P | 4 | 2.16 | 9.49 |
References
- Katayama, S.; Kawahito, Y. Laser direct joining of metal and plastic. Scr. Mater. 2008, 59, 1247–1250. [Google Scholar] [CrossRef]
- Balle, F.; Wagner, G.; Eifler, D. Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer—Joints. Mat. Wiss. Werkstofftech. 2007, 38, 934–938. [Google Scholar] [CrossRef]
- Mitschang, P.; Velthuis, R.; Didi, M. Induction Spot Welding of Metal/CFRPC Hybrid Joints. Adv. Eng. Mater. 2013, 15, 804–813. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; dos Santos, J.F. Joining of Polymers and Polymer-Metal Hybrid structures: Recent Developments and Trends. Poly. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Lambiase, F.; Balle, F.; Blaga, L.-A.; Liu, F.; Amancio-Filho, S.T. Friction-based processes for hybrid multi-material joining. Compos. Struct. 2021, 266, 113828. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; dos Santos, J.F. Method for Joining Metal and Plastic Workpieces. European Patent No. EP2329905B1, 29 October 2013. [Google Scholar]
- Goushegir, S.M. Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures. Weld. World 2016, 60, 1073–7093. [Google Scholar] [CrossRef] [Green Version]
- Esteves, J.V.; Amancio-Filho, S.T.; dos Santos, J.F.; Canto, L.B.; Hage, E., Jr. Friction spot joining of aluminum 6181-T4 and carbon fiber reinforced poly(phenylene sulfide). In Proceedings of the 70th Annual Technical Conference of the Society of Plastics Engineers 2012 (ANTEC 2012), Orlando, FL, USA, 2–4 April 2012; pp. 1698–1704. [Google Scholar]
- Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. Friction Spot Joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechanical performance. Mater. Des. 2014, 54, 196–206. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; Bueno, C.; dos Santos, J.F.; Huber, N.; Hage, E., Jr. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater. Sci. Eng. A 2011, 528, 3841–3848. [Google Scholar] [CrossRef] [Green Version]
- Esteves, J.V.; Goushegir, S.M.; dos Santos, J.F.; Canto, L.B.; Hage, E., Jr.; Amancio-Filho, S.T. Friction spot joining of aluminum AA6181-T4 and carbon fiber-reinforced poly(phenylene sulfide): Effects of process parameters on the microstructure and mechanical strength. Mater. Des. 2014, 66 Pt B, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. Influence of process parameters on mechanical performance and bonding area of AA2024/carbon-fiber-reinforced poly(phenylene sulfide) friction spot single lap joints. Mater. Des. 2015, 83, 431–442. [Google Scholar] [CrossRef] [Green Version]
- André, N.M.; dos Santos, J.F.; Amancio-Filho, S.T. Evaluation of Joint Formation and Mechanical Performance of the AA7075-T6/CFRP Spot Joints Produced by Frictional Heat. Materials 2019, 12, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. Influence of aluminum surface pre-treatments on the bonding mechanisms and mechanical performance of metal-composite single lap joints. Weld. World 2017, 61, 1099–1115. [Google Scholar] [CrossRef]
- André, N.M.; Goushegir, S.M.; Scharnagl, N.; dos Santos, J.F.; Canto, L.B.; Amancio-Filho, S.T. Composite surface pre-treatments: Improvement on adhesion mechanisms and mechanical performance of metal-composite friction spot joints with additional film interlayer. J. Adhes. 2018, 94, 723–742. [Google Scholar] [CrossRef]
- Goushegir, S.M.; Scharnagl, N.; dos Santos, J.F.; Amancio-Filho, S.T. XPS analysis of the interface between AA2024-T3/CF-PPS friction spot joints. Surf. Interface Anal. 2016, 48, 706–711. [Google Scholar] [CrossRef]
- André, N.M.; Goushegir, S.M.; dos Santos, J.F.; Canto, L.B.; Amancio-Filho, S.T. Friction Spot Joining of Aluminum Alloy 2024-T3 and Carbon-Fiber-Reinforced Poly(phenylene sulfide) Laminate with Additional PPS Film Interlayer: Microstructure, Mechanical Strength and Failure Mechanisms. Compos. Part B Eng. 2016, 94, 197–208. [Google Scholar] [CrossRef]
- André, N.M.; Bouali, A.C.; Maawad, E.; Staron, P.; dos Santos, J.F.; Zheludkevich, M.L.; Amancio-Filho, S.T. Corrosion behavior of metal–composite hybrid joints: Influence of precipitation state and bonding zones. Corros. Sci. 2019, 158, 108075. [Google Scholar] [CrossRef]
- Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. Failure and fracture micro-mechanisms in metal-composite single lap joints produced by welding-based joining techniques. Compos. Part A 2016, 81, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Alessio, R.P.; André, N.M.; Goushegir, S.M.; dos Santos, J.F.; Mazzaferro, J.A.E.; Amancio-Filho, S.T. Prediction of the mechanical and failure behavior of metal-composite hybrid joints using cohesive surfaces. Mater. Today Commun. 2020, 24, 1012053. [Google Scholar]
- André, N.M.; dos Santos, J.F.; Amancio-Filho, S.T. Impact resistance of metal-composite hybrid joints produced by frictional. Compos. Struct. 2020, 233, 111754. [Google Scholar] [CrossRef]
- Balle, F.; Huxhold, S.; Wagner, G.; Eifler, D. Damage Monitoring of Ultrasonically Welded Aluminum/CFRP-Joints by Electrical Resistance Measurements. Procedia Eng. 2011, 10, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Wahab, M.M.A. Fatigue in Adhesively Bonded Joints: A Review. ISRN Mater. Sci. 2012, 2012, 746308. [Google Scholar]
- Weibull, W. Fatigue Testing and the Analysis of Results; Oxford Pergamon Press: Oxford, UK, 1961. [Google Scholar]
- Vassilopoulos, A.P.; Keller, T. Fatigue of Fiber-Reinforced Composites; Springer: London, UK, 2011. [Google Scholar]
- Sims, D.F.; Brogdon, V.H. Fatigue behavior of composites under different loading modes. In ASTM STP 636; Reifsnider, K.L., Lauraitis, K.N., Eds.; American Society for Testing and Materials: Philadelphia, PA, USA, 1977; pp. 185–205. [Google Scholar]
- Khabbaz, R.S. Fatigue Life Prediction of Adhesively-Bonded Fiber-Reinforced Polymer Structural Joints under Spectrum Loading Patterns. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2012. [Google Scholar]
- Epaarachchi, J.A.; Clausen, P.D. An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies. Compos. Part A 2003, 34, 313–326. [Google Scholar] [CrossRef]
- ASTM E739-10. Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Sendeckyj, G.P. Fitting Models to Composite Materials Fatigue Data. In Test Methods and Design Allowables for Fibrous Composites, ASTM STP 734; Chamis, C.C., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1981; pp. 245–260. [Google Scholar]
- Whitney, J.M. Fatigue characterization of composite materials. In Fatigue in Fibrous Composite Materials. Philadelphia: ASTM STP 723; Lauraitis, K.N., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1981; pp. 133–151. [Google Scholar]
- Chowdhury, N.M.; Wang, J.; Chiu, W.K.; Chang, P. Static and fatigue testing bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy laminates used on aircraft structures. Compos. Struct. 2016, 142, 96–106. [Google Scholar] [CrossRef]
- Chowdhury, N.; Chiu, W.K.; Wang, J.; Chang, P. Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures. Compos. Struct. 2015, 121, 315–323. [Google Scholar] [CrossRef]
- Song, M.G.; Kweon, J.H.; Choi, J.H.; Byun, J.H.; Song, M.H.; Shin, S.J.; Lee, T.J. Effect of manufacturing methods on the shear strength of composite single-lap bonded joints. Compos. Struct. 2010, 92, 2194–2202. [Google Scholar] [CrossRef]
- Pereira, A.M.; Ferreira, J.M.; Antunes, F.V.; Bartolo, P.J. Study on the fatigue strength of AA 6082-T6 adhesive lap joints. Int. J. Adhes. Adhes. 2009, 29, 633–638. [Google Scholar] [CrossRef]
- Kim, W.S.; Lee, J.J. Adhesion strength and fatigue life improvement of co-cured composite/metal lap joints by silane-based interphase formation. Adh. Sci. Technol. 2007, 21, 125–140. [Google Scholar] [CrossRef]
- Bland, D.J.; Kinloch, A.J.; Watts, J.F. The Role of the Surface Pretreatment in the Durability of Aluminium-Alloy Structural Adhesive Joints: Mechanisms of Failure. Adhesion 2013, 89, 369–397. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.R. Handbook of Aluminium & Aluminium Alloys; ASM International: Geauga County, OH, USA, 1996. [Google Scholar]
- Favaloro, M.R. Thermoplastic composites for aerospace. The IAPD Magazine, April/May 2010. [Google Scholar]
- Maruszczak, W. Advanced composite polymer for the automotive market; long fiber reinforced linear polyphenylene sulfide (PPS). In Proceedings of the SPE ACCE Conference, Troy, MI, USA, 11–13 September 2007. [Google Scholar]
- Spruiell, J.E.; Janke, C.J. A Review of the Measurement and Development of Crystallinity and Its Relation to Properties in Neat Poly(Phenylene Sulfide) and Its Fiber Reinforced Composites; Report No. ORNL/TM-2004/304; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2004. [Google Scholar]
- Andre, N.M.; Goushegir, S.M.; dos Santos, J.F.; Canto, L.B.; Amancio-Filho, S.T. On the Microstructure and Mechanical Performance of Friction Spot Joining with Additional Film Interlayer. In Proceedings of the Annual Conference of the Society of Plastics Engineers (ANTEC 2014), Las Vegas, CA, USA, 28–30 April 2014. [Google Scholar]
- Dube, M.; Hubert, P.; Gallet, J.N.A.H.; Stavrov, D.; Bersee, H.E.N.; Yousefpour, A. Fatigue performance characterisation of resistance-welded thermoplastic composites. Comp. Sci. Technol. 2008, 68, 1759–1765. [Google Scholar] [CrossRef]
- Lin, P.C.; Pan, J.; Pan, T. Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 1: Welds made by a concave tool. Int. J. Fatigue 2008, 30, 74–89. [Google Scholar] [CrossRef]
- Quaresimin, M.; Ricotta, M. Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Comp. Sci. Technol. 2006, 66, 176–187. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; das Neves, P.J.C.; Adams, R.D.; Wang, A.; Spelt, J.K. Analytical models of adhesively bonded joints—Part II: Comparative study. Int. J. Adhes. Adhes. 2009, 29, 331–341. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; das Neves, P.J.C.; Adams, R.D.; Spelt, J.K. Analytical models of adhesively bonded joints—Part I: Literature survey. Int. J. Adhes. Adhes. 2009, 29, 319–330. [Google Scholar] [CrossRef]
- Goland, M.; Reissner, E. The Stresses in Cemented Joints. Appl. Mech. 1944, 11, A17–A27. [Google Scholar] [CrossRef]
- Volkersen, O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 1938, 15, 41–47. [Google Scholar]
- Shahzad, M.; Chaussumier, M.; Chieragatti, R.; Mabru, C.; Rezai-Aria, F. Effect of sealed anodic film on fatigue performance of 2214-T6 aluminum alloy. Surf. Coat. Technol. 2012, 206, 2733–2739. [Google Scholar] [CrossRef] [Green Version]
- von Bestenbostel, W.; Friedrich, K. The appearance of fatigue striations in the SEM. In Proceedings of the 17th International Conference on Composite Materials, ICCM-17, Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, Appendix: Table A4, 3rd ed.; Chapman & Hall/CRC: New York, NY, USA, 2003. [Google Scholar]
Surface Pre-Treatment | Exponential | Power Law | Wear-Out |
---|---|---|---|
SB | 846 | 851 | 838 |
SB + CC | 1381 | 1387 | 1445 |
PAA | 1003 | 1000 | 990 |
PAA-P | 2644 | 2589 | 2730 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goushegir, S.M.; Santos, J.F.d.; Amancio-Filho, S.T. Fatigue Performance of Metal–Composite Friction Spot Joints. Materials 2021, 14, 4516. https://doi.org/10.3390/ma14164516
Goushegir SM, Santos JFd, Amancio-Filho ST. Fatigue Performance of Metal–Composite Friction Spot Joints. Materials. 2021; 14(16):4516. https://doi.org/10.3390/ma14164516
Chicago/Turabian StyleGoushegir, Seyed Mohammad, Jorge F. dos Santos, and Sergio T. Amancio-Filho. 2021. "Fatigue Performance of Metal–Composite Friction Spot Joints" Materials 14, no. 16: 4516. https://doi.org/10.3390/ma14164516
APA StyleGoushegir, S. M., Santos, J. F. d., & Amancio-Filho, S. T. (2021). Fatigue Performance of Metal–Composite Friction Spot Joints. Materials, 14(16), 4516. https://doi.org/10.3390/ma14164516