Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate
Abstract
:1. Introduction
Concrete Construction and Demolition Waste
2. Materials and Methods
2.1. Materials’ Collection
2.2. Materials’ Characterization
3. Results and Discussion
3.1. Characterization of Asphaltic Cement and Aggregates
3.2. Characterization of Petrous Aggregates Mixtures with Different RCA Percentage Substitutions
3.3. Design of Asphaltic Mixtures with the Incorporation of RCA as Petrous Aggregates Using the Marshall Methodology
3.4. Correlation between the Asphaltic Mixtures Performance and the RCA Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez, D.A.; Aenlle, A.A.; Tenza-Abril, A.J. Laboratory evaluation of hot asphalt concrete properties with Cuban recycled concrete aggregates. Sustainability 2018, 10, 2590. [Google Scholar] [CrossRef] [Green Version]
- Alvarez Tumalan, J.U.; Ruiz Silva, R.; Muñoz Garcia, V.H.; Jorge Salvador, A. Ecotecnias aplicadas a la vivienda de interes social en Acapulco, Guerrero. Innova Ing. 2019, 1, 1–6. [Google Scholar]
- Delgado, J.O.A.; Vargas, M.A.C.; Saucedo, M.W.H. Uso de material reciclado en la fabricación de concreto. Caxamarca 2017, 16, 37–43. [Google Scholar]
- Martínez Molina, W.; Torres Acosta, A.A.; Alonso Guzmám, E.M.; Chávez García, H.L.; Hernández Barrios, H.; Lara Gómez, C.; Martínez Alonso, W.; Pérez Quiroz, J.T.; Bedolla Arrollo, J.A.; González Valdéz, F.M. Recycled concrete: A review. Rev. ALCONPAT. 2015, 5, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Rojas Valencia, M.N. Desarrollo tecnológico para la fabricación de materiales agregados reciclados (AR) con base en residuos de construcción. Gac. Del Inst. De Ing. UNAM 2019, 1, 1–14. [Google Scholar]
- Ossa, A.; García, J.L. Una alternativa para la construcción de carpetas asfálticas. Gac. Del Inst. De Ing. UNAM 2017, 1, 14–17. [Google Scholar]
- Pasandín, A.R.; Pérez, I. Characterisation of recycled concrete aggregates when used in asphalt concrete: A technical literature review. Eur. J. Environ. Civ. Eng. 2015, 19, 917–930. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, J.; Liu, X.; Lin, Y.; Yu, H. Design and performance of emulsified asphalt mixtures containing construction and demolition waste. Constr. Build. Mater. 2020, 239, 117846. [Google Scholar] [CrossRef]
- Fatemi, S.; Imaninasab, R. Performance evaluation of recycled asphalt mixtures by construction and demolition waste materials. Constr. Build. Mater. 2016, 120, 450–456. [Google Scholar] [CrossRef]
- Pérez, I.; Toledano, M.; Gallego, J.; Taibo, J. Propiedades mecánicas de mezclas bituminosas en caliente fabricadas con áridos reciclados de residues de construcción y demolitión. Mater. De Constr. 2007, 57, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.D.A.A.E.; Rodrigues, J.K.G.; De Carvalho, M.W.; Lucena, L.C.D.F.L.; Cavalcante, E.H. Mechanical performance of asphalt mixtures using polymer-micronized PET-modified. Road Mater. Pavement Des. 2017, 19, 1001–1009. [Google Scholar] [CrossRef]
- Polaczyk, P.; Ma, Y.; Xiao, R.; Jiang, X.; Hang, B. Characterization of aggregate interlocking in hot mix asphalt by mechanistic performance tests. Road Mater. Pavement Des. 2021, 22 (Suppl. 1), S498–S513. [Google Scholar] [CrossRef]
- NOM-161-SEMARNAT-2011. Criterios Para Clasificar los Residuos de Manejo Especial y Determinar Cuales Están Sujetos a Plan de Manejo; SEMARNAT: Mexico City, Mexico, 2011. [Google Scholar]
- Pérez, I.; Pasandín, A.R.; Medina, L. Hot mix asphalt using C&D waste as coarse aggregates. Mater. Des. 2012, 36, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Pérez Pérez, I.; Rodríguez Pasandín, A.M.; Gallego Medina, J. Mezclas asfálticas dosificadas con RCD para carreteras de bajo tráfico. Ingeopres 2009, 185, 24–26. [Google Scholar]
- Torres, R.; Flores, P.; Flores, M.; Flores, V.; Mairon, K. Mezclas asfálticas con materiales reciclados de construcción y demolición para la reparación de pavimentos. Apl. De La Ing. 2014, 1, 1–7. [Google Scholar]
- Bastidas-Martínez, J.G.; Rondón-Quintana, H.A.; Contreras-Zartha, L.; Forero-Castaño, S.; Rojas-Rozo, L. Evaluación de una mezcla de concreto asfáltico con incorporación de agregados reciclados de concreto. Rev. UIS Ing. 2021, 20, 75–84. [Google Scholar] [CrossRef]
- Kardos, A.J.; Durham, S.A. Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications. Constr. Build. Mater. 2015, 98, 832–845. [Google Scholar] [CrossRef]
- Guzmán, M.A.V.; Alamilla, H.D.; Alonso-Guzmán, E.M.; Molina, W.M.; Chávez-García, H.L.; Ruiz, R.R. Presence Impact under indirect tensile strength of bitumen stabilized mix with foamed asphalt for a base layer. Key Eng. Mater. 2020, 841, 108–113. [Google Scholar] [CrossRef]
- López Domínguez, M.G.; Pérez Salazar, A.; Garnica Anguas, P. Estado del Arte Sobre el Uso de Residuos y Sub-Productos Industriales en la Construcción de Carreteras; Instituto Mexicano de Transporte: Sanfandila, Queretaro, Mexico, 2014; (Issue 394). [Google Scholar]
- Mendoza, G.B. La certificación verde. Construcción y Tecnología 2008, 241, 40–43. [Google Scholar]
- Islam, R.; Nazifa, T.H.; Yuniarto, A.; Shanawaz Uddin, A.S.M.; Salmiati, S.; Shahid, S. An empirical study of construction and demolition waste generation and implication of recycling. J. Waste Manag. 2019, 95, 10–21. [Google Scholar] [CrossRef]
- Umar, U.A.; Shafiq, N.; Ahmad, F.A. A case study on the effective implementation of the reuse and recycling of construction & demolition waste management practices in Malaysia. Ain Shams Eng. J. 2021, 12, 283–291. [Google Scholar] [CrossRef]
- Arenas, C.F. El impacto en la edificación, Criterios Para Una Construcción Sostenible; Edisofer: Madrid, Spain, 2007. [Google Scholar]
- Garnica Anguas, P.; Delgado Alamilla, H.; Sandoval Sandoval, C.D. Publicación Técnica No 271. In Análisis Comparativo de los Métodos Marshall y Superpave Para Compactación de Mezclas Asfálticas; Secretaría de Comunicaciones y Trasporte, Instituto Mexicano del Transporte: Sanfandila, Queretaro, Mexico, 2005. [Google Scholar]
- ASTM C29/C29M-17a. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM C128–15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM D2419–14. Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM D5444–15. Standard Test Method for Mechanical Size Analysis of Extracted Aggregate; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM D4402/D4402M-15. Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM D5/D5M-20. Standard Test Method for Penetration of Bituminous Materials; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- ASTM D3143/D3143M-19. Standard Test Method for Flash Point of Cutback Asphalt with Tag Open-Cup Apparatus; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- ASTM D36/D36M-14. Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus); ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- ASTM D71–94. Standard Test Method for Relative Density of Solid Pitch and Asphalt (Displacement Method); ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- SCT M-MMP-1–06/03. Granulometria de Materiales Compactables para Terracerias; SCT: Mexico City, Mexico, 2003. [Google Scholar]
- AASHTO T 27, 2020 Edition. Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates; AASHTO: Washington, DC, USA, 2020. [Google Scholar]
- ASTM D3625/D3625M-20. Standard Practice for Effect of Water on Asphalt-Coated Aggregate Using Boiling Water; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- SCT M-MMP-4–04–003/2. Densidad Relativa de Materiales Petreos para Mezclas Asfalticas; SCT: Mexico City, Mexico, 2002. [Google Scholar]
- ASTM C127–15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- SCT M-MMP-4–04–006/02. Desgaste Mediante la Prueba de Los Angeles de Materiales Petreos para Mezclas Asfalticas; SCT: Mexico City, Mexico, 2002. [Google Scholar]
- ASTM C131/C131M-20. Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- SCT M-MMP-4–04–005/08. Particulas Alargadas y Lajeadas de Materiales Petreos para Mezclas Asfalticas; SCT: Mexico City, Mexico, 2008. [Google Scholar]
- ASTM D4791–19. Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- SCT-M-MMP-4–04–004–16. Equivalente de Arena de Materiales Petreos para Materiales Asfalticos; SCT: Mexico City, Mexico, 2016. [Google Scholar]
- SCT-M-MMP-4–05–005–02. Viscosidad Rotacional Brookfield de Cementos Asfalticos; SCT: Mexico City, Mexico, 2002. [Google Scholar]
- Zou, G.; Sun, X.; Liu, X.; Zhang, J. Influence factors on using recycled concrete aggregate in foamed asphalt mixtures based on tensile strength and moisture resistance. Constr. Build. Mater. 2020, 265. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, Z.; Hu, J.; Zheng, D.; Chen, L.; Zhang, M.; Yu, J. Investigation on the properties of aggregate-mastic interfacial transition zones (ITZs) in asphalt mixture containing recycled concrete aggregate. Constr. Build. Mater. 2020, 269, 121257. [Google Scholar] [CrossRef]
- Mikhailenko, P.; Kakar, M.R.; Piao, Z.; Bueno, M.; Poulikakos, L. Incorporation of recycled concrete aggregate (RCA) fractions in semi-dense asphalt (SDA) pavements: Volumetrics, durability and mechanical properties. Constr. Build. Mater. 2020, 264, 120166. [Google Scholar] [CrossRef]
- Sanchez-Cotte, E.H.; Fuentes, L.; Martinez-Arguelles, G.; Rondón Quintana, H.A.; Walubita, L.F.; Cantero-Durango, J.M. Influence of recycled concrete aggregates from different sources in hot mix asphalt design. Constr. Build. Mater. 2020, 259, 120427. [Google Scholar] [CrossRef]
- Hassan, A.; Mahmud, M.; Adi, N.; Rahmat, N.; Hainin, M.; Jaya, R.P. Effects of air voids content on the performance of porous asphalt mixture. ARPN J. Eng. Appl. Sci. 2016, 11, 11884–11887. [Google Scholar]
- AASHTO T-231. Standard Method of Test for Determining the Fatigue Life of Compacted Asphalt Mixtures Subjected to Repeated Flexural Bending; AASHTO: Washington, DC, USA, 2017. [Google Scholar]
Test | Standard | Material | Values Obtained | Suggested Values |
---|---|---|---|---|
Effective specific gravity | SCT-M-MMP-4-04-003/2 [38] ASTM C-127-15 [36] | NA | 2.72 g/cm3 | Doesn’t apply |
RCA | 2.45 g/cm3 | |||
Bulk specific gravity | SCT-M-MMP-4-04-003/2 [38] ASTM C-127-15 [39] | NA | 2.67 g/cm3 | 2.40 g/cm3 |
RCA | 2.20 g/cm3 | |||
Absorption | ASTM C-128-15 [27] | NA | 1.68% | Doesn’t apply |
RCA | 7.67% | |||
Los Angeles Resistance to Degradation by Abrasion | SCT-M-MMP-4-04-006/02 [40] ASTM C131/C131M-20 [41] | NA | 15% | 30% maximum |
RCA | 18.9% | |||
Flat and Elongated Particles in Coarse Aggregate | SCT- M-MMP-4-04-005/08 [42] ASTM 4791-19 [43] | NA | 34% | 40% maximum |
RCA | 33.5% | |||
Sand Equivalent Value of Fine Aggregates | SCT-M-MMP-4-05-004-16 [44] ASTM D2419-14 [28] | NA | 66.3% | 50% minimum |
Density | ASTM D71-94 [34] | Asphalt | 1.03 g/cm3 | Doesn’t apply |
Viscosity Determination of Asphalt at Elevated Temperatures | SCT-M-MMP-4-05-005-02 [45] ASTM D4402/D4402M-15 [30] | Asphalt | 165–159 °C (mixed) 152–147 °C (compaction) | Doesn’t apply |
Properties of the Mixtures | Control | 10% RCA | 20% RCA | 30% RCA | SCT Values |
---|---|---|---|---|---|
Optimum asphalt content (%) | 6.66 | 6.70 | 6.84 | 6.88 | – |
Specific gravity (kg/cm3) | 2.35 | 2.25 | 2.19 | 2.14 | – |
Stability (Kg) | 809 | 838 | 828 | 885 | 816 min |
Voids (%) | 4.80 | 6.53 | 6.00 | 5.00 | 3–5 |
Flow (mm) | 3.24 | 3.65 | 3.55 | 3.50 | 2–3.5 |
Voids of the Mineral Aggregate (VMA) (%) | 17.6 | 15.8 | 11.8 | 9.1 | 14 min |
Voids Filled by Asphalt (VFA) % | 72.7 | 58.5 | 47.8 | 44.5 | 65–75 |
Mixture | Test | Half | Standard Deviation | Variance |
---|---|---|---|---|
Mixture 10% RCA | Marshall stability (kN) | 8.06 | 0.95 | 0.9 |
Mixture 20% RCA | 8.01 | 0.64 | 0.41 | |
Mixture 30% RCA | 8.43 | 0.72 | 0.51 | |
Mixture Testing | 7.53 | 1.06 | 1.11 | |
Mixture 10% RCA | Marshall flow (mm) | 3.75 | 0.26 | 0.07 |
Mixture 20% RCA | 3.32 | 0.42 | 0.18 | |
Mixture 30% RCA | 3.41 | 0.32 | 0.1 | |
Mixture Testing | 3.69 | 0.76 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espino-Gonzalez, C.U.; Martinez-Molina, W.; Alonso-Guzman, E.M.; Chavez-Garcia, H.L.; Arreola-Sanchez, M.; Sanchez-Calvillo, A.; Navarrete-Seras, M.A.; Borrego-Perez, J.A.; Mendoza-Sanchez, J.F. Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate. Materials 2021, 14, 4196. https://doi.org/10.3390/ma14154196
Espino-Gonzalez CU, Martinez-Molina W, Alonso-Guzman EM, Chavez-Garcia HL, Arreola-Sanchez M, Sanchez-Calvillo A, Navarrete-Seras MA, Borrego-Perez JA, Mendoza-Sanchez JF. Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate. Materials. 2021; 14(15):4196. https://doi.org/10.3390/ma14154196
Chicago/Turabian StyleEspino-Gonzalez, Carlos U., Wilfrido Martinez-Molina, Elia M. Alonso-Guzman, Hugo L. Chavez-Garcia, Mauricio Arreola-Sanchez, Adria Sanchez-Calvillo, Marco A. Navarrete-Seras, Jorge A. Borrego-Perez, and Juan F. Mendoza-Sanchez. 2021. "Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate" Materials 14, no. 15: 4196. https://doi.org/10.3390/ma14154196
APA StyleEspino-Gonzalez, C. U., Martinez-Molina, W., Alonso-Guzman, E. M., Chavez-Garcia, H. L., Arreola-Sanchez, M., Sanchez-Calvillo, A., Navarrete-Seras, M. A., Borrego-Perez, J. A., & Mendoza-Sanchez, J. F. (2021). Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate. Materials, 14(15), 4196. https://doi.org/10.3390/ma14154196