Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Research and Composites Fabrication Method
2.2. Examination Methods
3. Results and Discussion
3.1. Crystallinity Evaluations
3.1.1. Wide Angle X-ray Diffraction Studies
3.1.2. Residual Stress Analysis
3.1.3. Differential Scanning Calorimetry
3.2. Hardness and Tensile Properties
4. Conclusions
- Glassy carbon impacts crystallization and crystal structure similarly to graphene. However, the size of GC powder has a crucial impact at crystallization onset.
- The GC particles in the HDPE matrix exhibit the smallest orthorhombic crystal lattice size and the smallest residual stress, in comparison with the other studied composites.
- Proposed methods of residual stress determination (both, iso-inclination and extended Bragg’s law) obtain reliable and recurrable results and could be successfully applied to polymers and polymer matrix composites.
- Addition of glassy carbon increased material strength due to reduced crystallite size and residual stress in the crystal phase. A similar effect was observed for composites with CNT and GNP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Xu, S.; Tangpong, X.W. Review: Tribological behavior of polyethylene-based nanocomposites. J. Mater. Sci. 2013, 48, 578–597. [Google Scholar] [CrossRef]
- Pawlak, W.; Kowalewski, P.; Przekop, R. On the Tribological Properties Of Polylactide (Pla) Applied in 3d Printing Technology. Tribologia 2020, 289, 57–62. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Review of the mechanical properties of carbon nanofiber/polymer composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 2126–2142. [Google Scholar] [CrossRef]
- Olesik, P.; Godzierz, M.; Kozioł, M. Preliminary Characterization of Novel LDPE-Based Wear-Resistant Composite Suitable for FDM 3D Printing. Materials 2019, 12, 2520. [Google Scholar] [CrossRef] [Green Version]
- Fouad, H.; Elleithy, R. High density polyethylene/graphite nano-composites for total hip joint replacements: Processing and in vitro characterization. J. Mech. Behav. Biomed. Mater. 2011, 4, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Dabees, S.; Kamel, B.M.; Tirth, V.; Elshalakny, A.B. Experimental design of Al2O3/MWCNT/HDPE hybrid nanocomposites for hip joint replacement. Bioengineered 2020, 11, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Pelto, J.; Verho, T.; Ronkainen, H.; Kaunisto, K.; Metsäjoki, J.; Seitsonen, J.; Karttunen, M. Matrix morphology and the particle dispersion in HDPE nanocomposites with enhanced wear resistance. Polym. Test. 2019, 77, 105897. [Google Scholar] [CrossRef]
- Weng, W.-G.; Chen, G.-H.; Wu, D.-J.; Yan, W.-L. HDPE/expanded graphite electrically conducting composite. Compos. Interfaces 2004, 11, 131–143. [Google Scholar] [CrossRef]
- Sahu, A.K.; Sudhakar, K.; Sarviya, R. Influence of U.V light on the thermal properties of HDPE/Carbon black composites. Case Stud. Therm. Eng. 2019, 15, 100534. [Google Scholar] [CrossRef]
- Gaska, K.; Xu, X.; Gubanski, S.; Kádár, R. Electrical, Mechanical, and Thermal Properties of LDPE Graphene Nanoplatelets Composites Produced by Means of Melt Extrusion Process. Polymers 2017, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszkiewicz, S.; Szymczyk, A.; Pawlikowska, D.; Subocz, J.; Zenker, M.; Masztak, R. Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability. Nanomaterials 2018, 8, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaska, K.; Kádár, R.; Rybak, A.; Siwek, A.; Gubanski, S. Gas Barrier, Thermal, Mechanical and Rheological Properties of Highly Aligned Graphene-LDPE Nanocomposites. Polymers 2017, 9, 294. [Google Scholar] [CrossRef]
- Al-Saleh, M.A.; Yussuf, A.A.; Al-Enezi, S.; Kazemi, R.; Wahit, M.U.; Al-Shammari, T.; Al-Banna, A. Polypropylene/Graphene Nanocomposites: Effects of GNP Loading and Compatibilizers on the Mechanical and Thermal Properties. Materials 2019, 12, 3924. [Google Scholar] [CrossRef] [Green Version]
- Coppola, B.; Di Maio, L.; Incarnato, L.; Tulliani, J.-M. Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring. Nanomaterials 2020, 10, 814. [Google Scholar] [CrossRef]
- Myalski, J.; Godzierz, M.; Olesik, P. Effect of Carbon Fillers on the Wear Resistance of PA6 Thermoplastic Composites. Polymers 2020, 12, 2264. [Google Scholar] [CrossRef]
- Xu, S.; Akchurin, A.; Liu, T.; Wood, W.; Tangpong, X.W.; Akhatov, I.S.; Zhong, W.-H. Wear of Carbon Nanofiber Reinforced HDPE Nanocomposites Under Dry Sliding Condition. J. Nanotechnol. Eng. Med. 2012, 3, 041003. [Google Scholar] [CrossRef]
- Xu, S.; Akchurin, A.; Liu, T.; Wood, W.; Tangpong, X.W.; Akhatov, I.S.; Zhong, W.-H. Wear and Friction of Carbon Nanofiber-Reinforced HDPE Composites. J. Tribol. 2012, 134, 041602. [Google Scholar] [CrossRef]
- Liu, T.; Li, B.; Lively, B.; Eyler, A.; Zhong, W.-H. Enhanced wear resistance of high-density polyethylene composites reinforced by organosilane-graphitic nanoplatelets. Wear 2014, 309, 43–51. [Google Scholar] [CrossRef]
- Tashiro, K.; Ishino, K.; Ohta, T. Temperature dependence of crystal structure of uniaxially-oriented polyethylene analysed by an X-ray imaging plate system. Polymers 1999, 40, 3469–3478. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J. The measurement of the crystallinity of polymers by DSC. Polymers 2002, 43, 3873–3878. [Google Scholar] [CrossRef]
- Abuibaid, A.Z.; Iqbal, M.Z. Thermally reduced graphene/polyethylene nanocomposites: Effects of graphene on isothermal and nonisothermal crystallization of polyethylene. Heliyon 2020, 6, e03589. [Google Scholar] [CrossRef] [PubMed]
- Şahin, K.; Clawson, J.K.; Singletary, J.; Horner, S.; Zheng, J.; Pelegri, A.; Chasiotis, I. Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymers 2018, 140, 96–106. [Google Scholar] [CrossRef]
- Vega, J.F.; Martínez-Salazar, J.; Trujillo, M.; Arnal, M.L.; Müller, A.J.; Bredeau, S.; Dubois, P. Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules 2009, 42, 4719–4727. [Google Scholar] [CrossRef]
- Ahmad, I.A.; Kim, H.-K.; Deveci, S.; Kumar, R.V. Non-Isothermal Crystallisation Kinetics of Carbon Black-Graphene-Based Multimodal-Polyethylene Nanocomposites. Nanomaterials 2019, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Graziano, A.; Jaffer, S.; Sain, M. Graphene oxide modification for enhancing high-density polyethylene properties: A comparison between solvent reaction and melt mixing. J. Polym. Eng. 2018, 39, 85–93. [Google Scholar] [CrossRef]
- Yokoyama, J.; Murabayashi, M.; Takahashi, Y.; Mukaibo, T. Measurement of High-Temperature Thermal Properties of Glassy Carbon by Laser Flash Method. TANSO 1971, 1971, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Argemi, L.; Cisquella, A.; Madou, M.; Lee, J. Temperature-Dependent Electrical and Thermal Conductivity of Glassy Carbon Wires. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018; pp. 1280–1288. [Google Scholar]
- Savetlana, S.; Lubis, A.; Aditya, L.; Irfan, M.; Siadari, D.; Yusuf, G.E.M.; Jefri, H. Fly ash/phenolic resin composite for brake pad application: Fabrication, materials and thermal properties. Compos. Theory Pract. 2020, 20, 95–101. [Google Scholar]
- Cheng, S.; Chen, X.; Hsuan, Y.G.; Li, C.Y. Reduced Graphene Oxide-Induced Polyethylene Crystallization in Solution and Nanocomposites. Macromolecules 2011, 45, 993–1000. [Google Scholar] [CrossRef]
- Graziano, A.; Dias, O.A.T.; Garcia, C.; Jaffer, S.; Tjong, J.; Sain, M. Non-Isothermal Crystallization Behavior and Thermal Properties of Polyethylene Tuned by Polypropylene and Reinforced with Reduced Graphene Oxide. Nanomaterials 2020, 10, 1428. [Google Scholar] [CrossRef] [PubMed]
- Mertens, A.J.; Senthilvelan, S. Mechanical and tribological properties of carbon nanotube reinforced polypropylene composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2016, 232, 669–680. [Google Scholar] [CrossRef]
- Yetgin, S.H. Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Mater. Res. Technol. 2019, 8, 4725–4735. [Google Scholar] [CrossRef]
- Salah, N.; Alfawzan, A.M.; Saeed, A.; Alshahrie, A.; Allafi, W. Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Sci. Rep. 2019, 9, 20288. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.-L.; Park, S.-J. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess. Carbon Lett. 2011, 12, 57–69. [Google Scholar] [CrossRef] [Green Version]
- EL Achaby, M.; Qaiss, A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater. Des. 2013, 44, 81–89. [Google Scholar] [CrossRef]
- Batista, N.L.; Helal, E.; Kurusu, R.S.; Moghimian, N.; David, E.; Demarquette, N.R.; Hubert, P. Mass-produced graphene—HDPE nanocomposites: Thermal, rheological, electrical, and mechanical properties. Polym. Eng. Sci. 2019, 59, 675–682. [Google Scholar] [CrossRef]
Material | Lattice Parameters | Crystallite Size, nm | Lattice Strain | Crystallinity, % | |||
---|---|---|---|---|---|---|---|
a, Å | b, Å | c, Å | V, Å3 | ||||
ICDD | 4.94 | 7.24 | 2.54 | 93.2 | - | - | - |
Neat HDPE | 4.97 | 7.45 | 2.56 | 94.6 | 79.8 ± 10.0 | 1.41 ± 0.02 | 48.4 |
HDPE + GC | 4.93 | 7.41 | 2.55 | 93.1 | 32.1 ± 0.6 | 1.42 ± 0.04 | 49.2 |
HDPE + Gr | 4.93 | 7.41 | 2.55 | 93.1 | 56.5 ± 4.3 | 1.33 ± 0.05 | 49.1 |
HDPE + GNP | 4.93 | 7.41 | 2.55 | 93.0 | 37.5 ± 1.4 | 1.41 ± 0.03 | 49.8 |
HDPE + CNT | 4.93 | 7.41 | 2.55 | 93.0 | 40.4 ± 1.8 | 1.45 ± 0.04 | 49.2 |
Material | Residual Stress Analysis Using (020) Peak | Extended Bragg’s Law | |
---|---|---|---|
Linear Stress, MPa | Shear Stress, MPa | Stress, MPa | |
Neat HDPE | 0.87 ± 0.46 | 0 ± 0 | 0.9 ± 0.06 |
HDPE + GC | 0.28 ± 0.04 | 0.2 ± 0.03 | 0.2 ± 0.05 |
HDPE + Gr | −0.8 ± 0.26 | 0.2 ± 0.18 | −0.87 ± 0.12 |
HDPE + GNP | 0.6 ± 0.48 | 0.2 ± 0.10 | 0.45 ± +0.05 |
HDPE + CNT | −0.4 ± 0.27 | 1.8 ± 0.16 | −1.15 ± 0.15 |
Sample | Tc,onset (°C) | Tc,max (°C) | ΔHc (J/g) | Tm,max (°C) | ΔHm (J/g) |
---|---|---|---|---|---|
HDPE | 116.2 | 113.3 | 174.7 | 131.5 | 210.3 |
HDPE + GC | 115.1 | 111.9 | 168.9 | 132.3 | 201.8 |
HDPE + Gr | 115.5 | 112.1 | 177.9 | 132.1 | 209.8 |
HDPE + GNP | 120.6 | 116.2 | 176.5 | 132.7 | 209.5 |
HDPE + CNT | 115.6 | 112.0 | 171.1 | 132.5 | 197.3 |
Material | 1 | 2 | 3 | Average |
---|---|---|---|---|
HDPE | 13.43 MPa | 11.32 MPa | 12.15 MPa | 12.30 ± 1.07 MPa |
HDPE + GC | 16.36 MPa | 14.25 MPa | 18.27 MPa | 16.29 ± 2.01 MPa |
HDPE + CNT | 13.47 MPa | 19.43 MPa | 16.77 MPa | 16.56 ± 2.99 MPa |
HDPE + GNP | 17.04 MPa | 18.91 MPa | 19.84 MPa | 18.59 ± 1.43 MPa |
HDPE + Gr | 14.98 MPa | 14.91 MPa | 15.06 MPa | 14.98 ± 0.08 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olesik, P.; Godzierz, M.; Kozioł, M.; Jała, J.; Szeluga, U.; Myalski, J. Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon. Materials 2021, 14, 4024. https://doi.org/10.3390/ma14144024
Olesik P, Godzierz M, Kozioł M, Jała J, Szeluga U, Myalski J. Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon. Materials. 2021; 14(14):4024. https://doi.org/10.3390/ma14144024
Chicago/Turabian StyleOlesik, Piotr, Marcin Godzierz, Mateusz Kozioł, Jakub Jała, Urszula Szeluga, and Jerzy Myalski. 2021. "Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon" Materials 14, no. 14: 4024. https://doi.org/10.3390/ma14144024
APA StyleOlesik, P., Godzierz, M., Kozioł, M., Jała, J., Szeluga, U., & Myalski, J. (2021). Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon. Materials, 14(14), 4024. https://doi.org/10.3390/ma14144024