Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zeolite Collection and Preparation
2.2. Soil Collection and Preparation
2.3. Soil Amendment with Zeolite
2.4. PTEs Immobilization in Zeolite Treated Soil
2.5. Physico-Chemical Analysis
2.6. Calculation of Environmental and Risk Factors
3. Results and Discussion
3.1. Properties of Raw and Thermally Treated Zeolite
3.2. Soil Characteristics
3.3. PTE Immobilization
3.4. Environmental Risk Indicators
3.4.1. Individual and Global Contamination Factors
3.4.2. Risk Assessment Code
3.4.3. Environmental Risk Factor (ERF)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Belviso, C. Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes 2020, 8, 820. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Briff, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. Stabilization study of a contaminated soil with metal(loid)s adding different low-grade MgO degrees. Sustainability 2020, 12, 7340. [Google Scholar] [CrossRef]
- Hoaghia, M.A.; Levei, E.A.; Cadar, O.; Senila, M.; Hognogi, G.G. Assessment of metal contamination and ecological risk in urban soils situated near a metallurgical complex. Environ. Eng. Manag. J. 2017, 16, 1623–1630. [Google Scholar] [CrossRef]
- Contin, M.; Miho, L.; Pellegrini, E.; Gjoka, F.; Shkurta, E. Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. J. Soil Sediment 2019, 19, 4052–4062. [Google Scholar] [CrossRef]
- Palansooriyaa, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.K.; Scheckel, K.G.; Impellitteri, C.A.; Ryan, J.A. Toxic metals in the environment: Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Crit. Rev. Environ. Sci. Technol. 2004, 34, 495–604. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A. Sustainability: A new imperative in contaminated land remediation. Environ. Sci. Policy 2014, 39, 25–34. [Google Scholar] [CrossRef]
- Wen, J.; Yi, Y.; Zeng, G. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J. Environ. Manag. 2016, 178, 63–69. [Google Scholar] [CrossRef]
- Dessalegne, M.; Zewge, F.; Diaz, I. Aluminum hydroxide supported on zeolites for fluoride removal from drinking water: AO supported zeolites for defluoridation. J. Chem. Technol. Biot. 2016, 92. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Use of zeolite to neutralise nickel in a soil environment. Environ. Monit. Assess. 2018, 190, 54. [Google Scholar] [CrossRef] [Green Version]
- Misaelides, P. Application of natural zeolites in environmental remediation: A short review. Micropor. Mesopor. Mat. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. J. Clean. Prod. 2021, 311, 127461. [Google Scholar] [CrossRef]
- Gelves, J.F.; Monroy, R.; Romero, Y.A. Natural zeolites, fields of application in sectors of Colombian economy. J. Phys. Conf. Ser. 2018, 1126, 012023. [Google Scholar] [CrossRef]
- Cadar, O.; Senila, M.; Hoaghia, M.A.; Scurtu, D.A.; Miu, I.; Levei, E.A. Effects of thermal treatment on natural clinoptilolite-rich zeolite behavior in simulated biological fluids. Molecules 2020, 25, 2570. [Google Scholar] [CrossRef] [PubMed]
- Ghergari, L.; Gal, J. Mineralogy of the pollutant products formed in the Maşca exploration area (Lower Iara valley basin, Cluj County, Romania). Stud. Univ. Babes-Bolyai Geol. 2004, 49, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Pueyo, M.; Mateu, J.; Rigol, A.M.; Vidal, J.F.; Lopez-Sanchez, R.G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 152, 330–341. [Google Scholar] [CrossRef]
- Frentiu, T.; Ponta, M.; Levei, E.A.; Cordos, E. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure. Chem. Pap. 2009, 63, 239–248. [Google Scholar] [CrossRef]
- Ciesielski, H.; Sterckeman, T. A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils. Agronomie 1997, 17, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Kitsopoulos, K.P. Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: Applicability of the ammonium acetate saturation (AMAS) method. Clay Clay Miner. 1998, 47, 688–696. [Google Scholar] [CrossRef]
- Shresha, P.; Hurley, S.E.; Wemple, B.C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Ciavatta, A.; Govi, M.; Vittori Antisari, L.; Sequi, P. Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. J. Chromatogr. A 1990, 509, 141–146. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O.; Senila, L.; Hoaghia, A.; Miu, I. Mercury determination in natural zeolites samples by thermal decomposition atomic absorption spectrometry: Method validation in compliance with requirements for use as dietary supplements. Molecules 2019, 24, 4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadar, O.; Dinca, Z.; Senila, M.; Becze, A.; Todor, F. Studies on the modification of some natural zeolite from NW Romania after acid and basic treatments. In Proceedings of the 20th SGEM International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 16–25 August 2020; pp. 309–316. [Google Scholar]
- Miclean, M.; Cadar, O.; Levei, E.A.; Roman, R.; Ozunu, A.; Levei, L. Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from free-range cows. Int. J. Environ. Res. Public Health 2019, 16, 4064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemati, K.; Abu Bakar, N.K.; Abas, M.R.; Sobhanzadeh, E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Tytla, M. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland-case study. Int. J. Environ. Res. Public Health 2019, 16, 2430. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Feng, C.; Yang, Y.; Niu, J.; Shen, Z. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 2012, 241–242, 164–172. [Google Scholar] [CrossRef]
- Latosinska, J.; Kowalik, R.; Gawdzik, J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Pavelic Kraljevic, S.; Simovic Medica, J.; Gumbarevic, D.; Filoševic, A.; Pržulj, N.; Pavelic, K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front. Pharmacol. 2018, 9, 1350. [Google Scholar] [CrossRef]
- Zamzow, M.J.; Eichbaum, B.R.; Sandgren, K.R.; Shanks, D.E. Removal of heavy metals and other cations from wastewater using zeolites. Sep. Sci. Technol. 1990, 25, 1555–1569. [Google Scholar] [CrossRef]
- Order 756 (1997). Order of the Ministry of Water, Forestry and Environmental Protection for the Approval of the Regulation Regarding the Assessment of Environmental Pollution, No. 756 of November 3, 1997, Official Gazette No. 303 bis of November 6, 1997. (In Romanian).
- Moirou, A.; Xenidis, A.; Paspaliaris, I. Stabilization Pb, Zn, and Cd contaminated soil by means of natural zeolite. Soil Sedim. Contam. 2001, 10, 251–267. [Google Scholar] [CrossRef]
- Cruciani, G. Zeolites upon heating: Factors governing their thermal stability and structural changes. J. Phys. Chem. Solids 2006, 67, 1973–1994. [Google Scholar] [CrossRef]
- Akkoca, D.B.; Yilgin, M.; Ural, M.; Alcin, H.; Mergen, A. Hydrothermal and thermal treatment of natural clinoptilolite zeolite from Bigadic, Turkey: An experimental study. Geochem. Int. 2013, 51, 495–504. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Shao, H.; Shao, M. The remediation of the lead-polluted garden soil by natural zeolite. J. Hazard. Mater. 2009, 169, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Shanableh, A.; Kharabsheh, A. Stabilization of Cd, Ni and Pb in soil using natural zeolite. J. Hazard. Mater. 1996, 45, 207–217. [Google Scholar] [CrossRef]
Parameter | RZ | TZ | Soil | Alert Threshold * | Intervention Threshold * |
---|---|---|---|---|---|
pH | 9.52 | 9.55 | 8.58 | - | - |
Na2O (%) | 1.61 | 1.69 | 0.14 | - | - |
K2O (%) | 1.79 | 1.51 | 0.44 | - | - |
CaO (%) | 3.61 | 3.64 | 19.1 | - | - |
MgO (%) | 0.51 | 0.62 | 3.33 | - | - |
SiO2 (%) | 69.96 | 69.68 | - | - | - |
Al2O3 (%) | 13.61 | 14.02 | 2.40 | - | - |
Fe2O3 (%) | 1.38 | 1.36 | 16.7 | - | - |
MnO (%) | 0.03 | 0.04 | 0.50 | - | - |
TiO2 (%) | 0.02 | 0.02 | - | - | - |
LOI (%) | 7.47 | 7.38 | - | - | - |
Cd (mg/kg) | 0.16 | 0.14 | 30.6 | 3 | 5 |
Cr (mg/kg) | 4.29 | 4.14 | 17.7 | 100 | 300 |
Co (mg/kg) | 3.19 | 3.03 | 23.2 | 30 | 50 |
Cu (mg/kg) | 3.54 | 3.38 | 476 | 100 | 200 |
Ni (mg/kg) | 5.44 | 4.91 | 19.0 | 75 | 150 |
Pb (mg/kg) | 4.67 | 4.32 | 483 | 50 | 100 |
Zn (mg/kg) | 15.9 | 15.5 | 3040 | 300 | 600 |
CEC (meq/100 g) | 148 | 150 | 62.2 | - | - |
CT (%) | <0.01 | <0.01 | 2.82 | - | - |
NT (%) | <0.01 | <0.01 | 1.14 | - | - |
HA (%) | - | - | 1.70 | - | - |
Parameter | Time (Day) | C | TZS5 | TZS10 |
---|---|---|---|---|
pH (unit pH) | 0 | 8.58 | 8.49 | 8.48 |
30 | 8.60 | 8.66 | 8.64 | |
90 | 8.63 | 8.86 | 8.84 | |
C (%) | 0 | 2.82 | 2.70 | 2.56 |
30 | 2.80 | 2.67 | 2.54 | |
90 | 2.85 | 2.65 | 2.52 | |
N (%) | 0 | 1.14 | 1.09 | 1.02 |
30 | 1.10 | 1.08 | 1.01 | |
90 | 1.16 | 1.07 | 1.03 | |
CEC (meq/100 g) | 0 | 62.2 | 63.1 | 67.1 |
30 | 62.0 | 69.7 | 71.8 | |
90 | 61.4 | 76.7 | 79.0 | |
Humus (%) | 0 | 1.70 | 1.69 | 1.33 |
30 | 1.70 | 1.68 | 1.48 | |
90 | 1.74 | 1.63 | 1.54 |
Amendment | Time (Day) | F | PTE (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Co | Cu | Ni | Pb | Zn | |||
C | 0 | F1 | 12.8 ± 1.5 | 1.70 ± 0.18 | 7.26 ± 0.85 | 45.4 ± 5.5 | 3.06 ± 0.35 | 46.7 ± 5.5 | 413 ± 44 |
F2 | 2.57 ± 0.34 | 0.92 ± 0.10 | 2.24 ± 0.29 | 7.44 ± 0.92 | 1.67 ± 0.23 | 233 ± 26 | 313 ± 35 | ||
F3 | 0.90 ± 0.14 | 9.01 ± 1.12 | 2.42 ± 0.26 | 120 ± 15 | 1.02 ± 0.11 | 62.5 ± 7.0 | 83.9 ± 9.8 | ||
F4 | 12.9 ± 1.50 | 3.62 ± 0.39 | 10.1 ± 1.2 | 272 ± 33 | 11.1 ± 1.4 | 126 ± 14 | 2007 ± 189 | ||
∑ | 29.2 ± 3.8 | 15.2 ± 1.70 | 22.1 ± 2.6 | 445 ± 55 | 16.8 ± 2.0 | 469 ± 53 | 2817 ± 303 | ||
30 | F1 | 11.5 ± 1.0 | 1.50 ± 0.20 | 6.86 ± 0.55 | 40.8 ± 3.5 | 2.88 ± 0.29 | 42.2 ± 5.0 | 386 ± 37 | |
F2 | 2.00 ± 0.14 | 1.10 ± 0.22 | 2.00 ± 0.19 | 6.40 ± 0.76 | 1.35 ± 0.20 | 210 ± 25 | 302 ± 30 | ||
F3 | 0.65 ± 0.12 | 10.0 ± 1.57 | 2.12 ± 0.29 | 108 ± 20 | 0.98 ± 0.10 | 58.9 ± 6.6 | 78.4 ± 8.8 | ||
F4 | 14.0 ± 1.8 | 3.22 ± 0.52 | 9.80 ± 1.10 | 258 ± 30 | 10.4 ± 1.7 | 116 ± 16 | 1870 ± 140 | ||
∑ | 28.2 ± 3.5 | 15.8 ± 2.6 | 20.8 ± 2.2 | 413 ± 54 | 15.6 ± 2.0 | 427 ± 52 | 2636 ± 253 | ||
90 | F1 | 12.4 ± 1.2 | 1.86 ± 0.22 | 7.56 ± 0.75 | 42.0 ± 4.5 | 2.76 ± 0.42 | 40.7 ± 4.8 | 408 ± 40 | |
F2 | 2.82 ± 0.44 | 1.05 ± 0.18 | 2.52 ± 0.33 | 7.14 ± 0.52 | 1.46 ± 0.13 | 243 ± 30 | 294 ± 27 | ||
F3 | 1.1 ± 0.22 | 10.6 ± 0.9 | 2.33 ± 0.34 | 118 ± 20 | 1.14 ± 0.18 | 55.5 ± 7.2 | 81.5 ± 10.2 | ||
F4 | 13.6 ± 1.1 | 4.12 ± 0.49 | 9.62 ± 1.22 | 266 ± 24 | 11.5 ± 1.5 | 107 ± 10 | 1910 ± 160 | ||
∑ | 29.9 ± 4.2 | 17.6 ± 2.2 | 22.0 ± 2.8 | 433 ± 50 | 16.9 ± 2.3 | 446 ± 52 | 2693 ± 281 | ||
5% | 0 | F1 | 11.0 ± 1.0 | 1.68 ± 0.18 | 6.39 ± 0.67 | 42.4 ± 4.4 | 3.22 ± 0.34 | 37.4 ± 4.0 | 380 ± 41 |
F2 | 2.30 ± 0.19 | 0.98 ± 0.19 | 2.00 ± 0.21 | 9.36 ± 1.05 | 1.58 ± 0.18 | 210 ± 24 | 267 ± 29 | ||
F3 | 0.83 ± 0.09 | 9.41 ± 0.88 | 2.62 ± 0.27 | 108 ± 12 | 1.00 ± 0.2 | 58.1 ± 6.4 | 77.5 ± 8.1 | ||
F4 | 13.7 ± 1.24 | 2.33 ± 0.25 | 8.29 ± 0.89 | 219 ± 23 | 9.20 ± 0.14 | 144 ± 16 | 1701 ± 184 | ||
∑ | 27.8 ± 2.6 | 14.4 ± 1.9 | 19.3 ± 2.0 | 379 ± 41 | 15.0 ± 1.9 | 449 ± 50 | 2425 ± 260 | ||
30 | F1 | 8.91 ± 0.98 | 1.07 ± 0.12 | 5.03 ± 0.60 | 28.2 ± 2.9 | 2.02 ± 0.26 | 27.1 ± 3.0 | 290 ± 30 | |
F2 | 2.02 ± 0.24 | 1.10 ± 0.14 | 1.63 ± 0.14 | 3.64 ± 0.41 | 1.65 ± 0.19 | 184 ± 21 | 240 ± 25 | ||
F3 | 1.28 ± 0.15 | 8.55 ± 1.08 | 3.21 ± 0.34 | 127 ± 14 | 1.18 ± 0.14 | 63.6 ± 7.2 | 91.0 ± 8.9 | ||
F4 | 13.8 ± 1.5 | 3.54 ± 0.40 | 9.05 ± 0.94 | 217 ± 23 | 9.20 ± 1.1 | 173 ± 19 | 1838 ± 200 | ||
∑ | 26.0 ± 2.4 | 14.3 ± 1.7 | 18.9 ± 2.0 | 377 ± 41 | 14.1 ± 1.7 | 448 ± 50 | 2458 ± 255 | ||
90 | F1 | 6.60 ± 0.72 | 0.99 ± 0.11 | 4.33 ± 0.39 | 22.0 ± 2.3 | 2.23 ± 0.25 | 15.9 ± 1.7 | 200 ± 18 | |
F2 | 2.54 ± 2.24 | 0.86 ± 0.10 | 1.49 ± 0.16 | 3.04 ± 0.32 | 1.63 ± 0.2 | 178 ± 20 | 207 ± 23 | ||
F3 | 1.11 ± 0.10 | 8.78 ± 0.98 | 3.39 ± 0.35 | 120 ± 14 | 1.24 ± 0.23 | 63.0 ± 7.0 | 133 ± 16 | ||
F4 | 17.2 ± 1.82 | 4.24 ± 0.45 | 9.35 ± 1.1 | 197 ± 22 | 10.5 ± 1.2 | 180 ± 21 | 1839 ± 208 | ||
∑ | 27.4 ± 2.7 | 14.9 ± 1.7 | 18.6 ± 2.0 | 342 ± 38 | 15.6 ± 2.1 | 437 ± 49 | 2378 ± 260 | ||
10% | 0 | F1 | 10.3 ± 1.4 | 1.56 ± 0.19 | 5.92 ± 0.70 | 43.5 ± 5.4 | 2.99 ± 0.36 | 36.8 ± 4.8 | 393 ± 51 |
F2 | 2.18 ± 0.32 | 0.88 ± 0.12 | 1.91 ± 0.26 | 13.1 ± 1.8 | 1.50 ± 0.18 | 242 ± 35 | 301 ± 38 | ||
F3 | 0.72 ± 0.10 | 8.77 ± 1.10 | 2.39 ± 0.30 | 108 ± 15 | 0.91 ± 0.13 | 55.2 ± 7.1 | 73.7 ± 10.1 | ||
F4 | 13.8 ± 1.8 | 2.70 ± 0.45 | 8.36 ± 1.21 | 196 ± 22 | 8.7 ± 1.2 | 102 ± 14 | 1635 ± 180 | ||
∑ | 27.0 ± 3.7 | 13.9 ± 2.0 | 18.6 ± 2.4 | 361 ± 46 | 14.1 ± 1.8 | 436 ± 59 | 2402 ± 303 | ||
30 | F1 | 6.88 ± 0.92 | 1.21 ± 0.16 | 3.89 ± 0.51 | 23.4 ± 3.0 | 2.44 ± 0.31 | 24.0 ± 3.2 | 278 ± 35 | |
F2 | 1.76 ± 0.24 | 0.97 ± 0.12 | 1.64 ± 0.22 | 5.36 ± 0.83 | 1.64 ± 0.24 | 198 ± 25 | 254 ± 36 | ||
F3 | 1.06 ± 0.2 | 8.18 ± 1.11 | 3.04 ± 0.41 | 137 ± 20 | 1.11 ± 0.15 | 72.5 ± 9.2 | 106 ± 12 | ||
F4 | 14.6 ± 2.0 | 4.06 ± 0.54 | 10.1 ± 1.4 | 209 ± 26 | 10.0 ± 1.2 | 157 ± 24 | 1707 ± 310 | ||
∑ | 24.3 ± 3.7 | 14.4 ± 1.9 | 18.7 ± 2.5 | 375 ± 52 | 15.2 ± 2.0 | 451 ± 61 | 2345 ± 335 | ||
90 | F1 | 6.25 ± 0.82 | 1.12 ± 0.11 | 3.26 ± 0.41 | 20.2 ± 2.6 | 2.34 ± 0.28 | 11.3 ± 1.2 | 179 ± 22 | |
F2 | 2.41 ± 0.30 | 1.08 ± 0.15 | 1.43 ± 0.18 | 6.88 ± 0.86 | 1.60 ± 0.21 | 177 ± 22 | 227 ± 31 | ||
F3 | 1.69 ± 0.21 | 8.48 ± 1.03 | 2.60 ± 0.33 | 102 ± 14 | 0.90 ± 0.08 | 45.5 ± 7.2 | 162 ± 23 | ||
F4 | 15.1 ± 2.0 | 4.19 ± 0.60 | 12.4 ± 1.7 | 226 ± 28 | 7.8 ± 1.1 | 179 ± 28 | 1841 ± 230 | ||
∑ | 25.4 ± 3.3 | 14.9 ± 1.9 | 19.7 ± 2.5 | 355 ± 46 | 12.6 ± 1.5 | 413 ± 57 | 2409 ± 318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadar, O.; Dinca, Z.; Senila, M.; Torok, A.I.; Todor, F.; Levei, E.A. Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite. Materials 2021, 14, 3777. https://doi.org/10.3390/ma14143777
Cadar O, Dinca Z, Senila M, Torok AI, Todor F, Levei EA. Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite. Materials. 2021; 14(14):3777. https://doi.org/10.3390/ma14143777
Chicago/Turabian StyleCadar, Oana, Zamfira Dinca, Marin Senila, Anamaria Iulia Torok, Florin Todor, and Erika Andrea Levei. 2021. "Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite" Materials 14, no. 14: 3777. https://doi.org/10.3390/ma14143777
APA StyleCadar, O., Dinca, Z., Senila, M., Torok, A. I., Todor, F., & Levei, E. A. (2021). Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite. Materials, 14(14), 3777. https://doi.org/10.3390/ma14143777