Corrosion Resistance of Al–CNT Metal Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
- A—pure Al 1070;
- B—Al 1070 with 0.25 wt.% MWCNTs;
- D—Al 1070 with 0.5 wt.% MWCNTs.
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsai, Y.-H.; Wang, J.; Chien, W.-T.; Wei, C.-Y.; Wang, X.; Hsieh, S.-H. A BIM-based approach for predicting corrosion under insulation. Autom. Constr. 2019, 107, 102923. [Google Scholar] [CrossRef]
- Sun, L.; Li, C.; Zhang, C.; Su, Z.; Chen, C. Early Monitoring of Rebar Corrosion Evolution Based on FBG Sensor. Int. J. Struct. Stab. Dyn. 2017, 18, 1840001. [Google Scholar] [CrossRef]
- Latanision, R.M. Corrosion Resistance of Metal Matrix Composites; Massachusetts Inst of Tech Cambridge Dept of Materials Science and Engineering: Cambridge, MA, USA, 1992. [Google Scholar]
- Koli, D.K.; Agnihotri, G.; Purohit, R. Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields. Mater. Today Proc. 2015, 2, 3032–3041. [Google Scholar] [CrossRef]
- Katz-Demyanetz, A.; Popov, V.V.; Kovalevsky, A.; Safranchik, D.; Koptyug, A. Powder-bed additive manufacturing for aerospace application: Techniques, metallic and metal/ceramic composite materials and trends. Manuf. Rev. 2019, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Kunjiappan, S.; Palanisamy, P. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications. Int. Nano Lett. 2021. [Google Scholar] [CrossRef]
- Hihara, L.H.; Latanision, R.M. Corrosion of metal matrix composites. Int. Mater. Rev. 1994, 39, 245–264. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, A.K.; Arora, A.; Pati, S.; De, P.S. Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution. Trans. Nonferrous Met. Soc. China 2019, 29, 1383–1392. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nishimura, T.; Matsushima, I. Corrosion resistance of Al-based metal matrix composites. Mater. Sci. Eng. A 1995, 198, 113–118. [Google Scholar] [CrossRef]
- Qi, Y.; Kosinova, A.; Lakin, E.; Popov, V.; Rabkin, E.; Lapovok, R. Effect of SPD Processing on the Strength and Conductivity of AA6061 Alloy. Adv. Eng. Mater. 2019, 21, 1801370. [Google Scholar] [CrossRef]
- Lekatou, A.; Karantzalis, A.E.; Evangelou, A.; Gousia, V.; Kaptay, G.; Gácsi, Z.; Baumli, P.; Simon, A. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behavior. Mater. Des. 2015, 65, 1121–1135. [Google Scholar] [CrossRef]
- Aribo, S.; Fakorede, A.; Ige, O.; Olubambi, P. Erosion-corrosion behaviour of aluminum alloy 6063 hybrid composite. Wear 2017, 376–377, 608–614. [Google Scholar] [CrossRef]
- Zakaria, H.M. Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Eng. J. 2014, 5, 831–838. [Google Scholar] [CrossRef]
- Larianovsky, N.; Popov, V.; Katz-Demyanetz, A.; Fleisher, A.; Meyers, D.E.; Chaudhuri, R.S. Production of Al Metal Matrix Composites Reinforced with Carbon Nanotubes by Two-Stage Melt-Based HPDC-CE Method. J. Eng. Mater. Technol. Trans. ASME 2019, 141, 011002. [Google Scholar] [CrossRef]
- Shahsavar, S.; Ketabchi, M.; Bagherzadeh, S. Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process. Int. J. Miner. Metall. Mater. 2021, 28, 160–167. [Google Scholar] [CrossRef]
- Noguchi, T.; Magario, A.; Fukazawa, S.; Shimizu, S.; Beppu, J.; Seki, M. Carbon Nanotube/Aluminium Composites with Uniform Dispersion. Mater. Trans. 2004, 45, 602–604. [Google Scholar] [CrossRef] [Green Version]
- Ao, M.; Liu, H.; Dong, C.; Feng, S.; Liu, J. Degradation mechanism of 6063 aluminium matrix composite reinforced with TiC and Al2O3 particles. J. Alloys Compd. 2021, 859, 157838. [Google Scholar] [CrossRef]
- Bhandakkar, A.; Prasad, R.C.; Sastry, S.M.L. Deformation Behaviour of Aluminium Alloy AA6061-10% Fly Ash Composites for Aerospace Application. In Advanced Composites for Aerospace, Marine, and Land Applications; Sano, T., Srivatsan, T.S., Peretti, M.W., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–21. [Google Scholar] [CrossRef]
- Paul, R.C.; Joseph, R.; Kumar, V.N.; Devi, P.B.; Manigandan, S. Experimental analysis of hybrid metal matrix composite reinforced with Al2O3 and graphite. Int. J. Ambient Energy 2019, 1–5. [Google Scholar] [CrossRef]
- Kumar, S.D.; Ravichandran, M.; Jeevika, A.; Stalin, B.; Kailasanathan, C.; Karthick, A. Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram. Int. 2021, 47, 12951–12962. [Google Scholar] [CrossRef]
- Mahboob, H.; Sajjadi, S.A.; Zebarjad, S.M. Influence of nanosized Al2O3 weight percentage on microstructure and mechanical properties of Al–matrix nanocomposite. Powder Metall. 2011, 54, 148–152. [Google Scholar] [CrossRef]
- Xu, C.L.; Wei, B.Q.; Ma, R.Z.; Liang, J.; Ma, X.K.; Wu, D.H. Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon N. Y. 1999, 37, 855–858. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon N. Y. 2012, 50, 1843–1852. [Google Scholar] [CrossRef]
- ASTM International. G5 Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Esawi, A.M.K.; el Borady, M.A. Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 2008, 68, 486–492. [Google Scholar] [CrossRef]
- Kwon, H.; Takamichi, M.; Kawasaki, A.; Leparoux, M. Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater. Chem. Phys. 2013, 138, 787–793. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Merino, S.; Viejo, F.; Carboneras, M.; Arrabal, R. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp). Corros. Sci. 2005, 47, 1750–1764. [Google Scholar] [CrossRef]
- Xia, P.; Liu, Z.; Bai, S.; Lu, L.; Gao, L. Enhanced fatigue crack propagation resistance in a superhigh strength Al–Zn–Mg–Cu alloy by modifying RRA treatment. Mater. Charact. 2016, 118, 438–445. [Google Scholar] [CrossRef]
- Peng, G.S.; Chen, K.H.; Fang, H.C.; Chao, H.; Chen, S.Y. EIS study on pitting corrosion of 7150 aluminum alloy in sodium chloride and hydrochloric acid solution. Mater. Corros. 2010, 61, 783–789. [Google Scholar] [CrossRef]
- Rendón, M.V.; Calderón, J.A.; Fernández, P. Evaluation of the corrosion behavior of the al-356 alloy in NaCI solutions. Quim. Nova 2011, 34, 1163–1166. [Google Scholar] [CrossRef]
- Arrabal, R.; Mingo, B.; Pardo, A.; Mohedano, M.; Matykina, E.; Rodríguez, I. Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution. Corros. Sci. 2013, 73, 342–355. [Google Scholar] [CrossRef]
- Salazar, J.M.G.D.; Ureña, A.; Manzanedo, S.; Barrena, M.I. Corrosion behaviour of AA6061 and AA7005 reinforced with Al2O3 particles in aerated 3.5% chloride solutions: Potentiodynamic measurements and microstructure evaluation. Corros. Sci. 1998, 41, 529–545. [Google Scholar] [CrossRef]
Aluminium Alloy | Additive | Fabrication Method | Aimed Application | Ref. |
---|---|---|---|---|
AA1050 | WC, TiC | Mixing and casting | Aerospace, defence, automotive | [11] |
AA6063 | SiC, ash particles | Stir casting | Aerospace | [12] |
AA6063 | TiC, Al2O3 | In situ reaction and “near-liquid casting method” | Aerospace, automobile | [17] |
AA6061 | Fly ash | Stir casting | Aerospace | [18] |
Pure Al | Al2O3, SiC, graphite particles | Stir casting | High-tech construction applications | [19] |
AA7178 | ZrB2 | Stir casting | Aerospace, automobile | [20] |
AA6061 | C fibres, Al2O3 fibres, SiC whiskers | Squeeze casting | Aerospace | [9] |
Pure Al | Al2O3 | High-energy ball milling | Aerospace, automobile | [21] |
Al powder of 99.8% purity | SiC | Mixing and compaction | Aerospace, transportation | [13] |
AA1100-H12 | MWCNTs | Ultrasonic assembly & rolling | Aerospace, industrial applications | [15] |
AA1070 | MWCNTs | HPDC-CE | Aerospace, industrial applications | [14] |
Type | Outer Diameter, nm | Length, μm | Purity, wt.% | Surface Area, m2/g |
---|---|---|---|---|
NC7000 Nanocyl SA | 9.5 | 1.5 | 90 | 250–300 |
Potentiodynamic Test | |||||||
---|---|---|---|---|---|---|---|
Test cell | Solution | Temperature | Er equilibrium | Potentiostat | Auxiliary electrodes | Reference electrode | |
Glass bulb with 0.8 L of test solution | 0.1 N NaCl | 25 ± 1 °C | 30 min | Gamry Reference 3000 | Graphite (X1) | Saturated Calomel Electrode (sat’d KCl)—SCE | |
Linear polarization parameters | |||||||
Initial E | Final E | Sample area | Polarization scan rate | ||||
−250 mV | +250 mV | A-0.63 cm2 | B-0.63 cm2 | D-0.47 cm2 | 1 mV/s | ||
Impedance potentiostatic parameters | |||||||
Initial freq. (kHr) | Final freq. (mHr) | Sample area | DC voltage (V) = Eoc | ||||
100 | 10 | A-0.63 cm2 | B-0.63 cm2 | D-0.47 cm2 | Eoc(A) = −680 | Eoc(B) = −744 | Eoc(D) = −746 |
Sample | Material | Approximate Surface Area (cm2) | Ecor (mV) after 0.5 h vs. SCE | Ecor (mV) after 1 h vs. SCE | Icor (µA) | pH | |
---|---|---|---|---|---|---|---|
Before Test | After Test | ||||||
A | Al1070 | 0.63 | −689 | −680 | 0.03 | 7.05 | 6.54 |
B | Al1070 + 0.25% (w/w) MWCNTs | 0.63 | −789 | −44 | 0.06 | 7.0 | 6.74 |
D | Al1070 + 0.5% (w/w) MWCNTs | 0.47 | −787 | −746 | 0.04 | 7.1 | 6.7 |
Sample | Surface | Rs | Qd | a(d) | Rp | Qlf | a(lf) | Rt |
---|---|---|---|---|---|---|---|---|
(cm2) | (Ohm*cm2) | (S*sec^a/cm2) | (Ohm*cm2) | (S*sec^a/cm2) | Ohm*cm2 | |||
A | 0.63 | 39 | 7.12 × 10−6 | 0.89 | 9.00 × 103 | 1.79 × 10−4 | 1 | 5.51 × 103 |
B | 0.63 | 36 | 4.99 × 10−5 | 0.80 | 1.34 × 103 | 5.45 × 10−4 | 1 | 4.78 × 103 |
D | 0.47 | 32 | 3.60 × 10−4 | 0.54 | 5.64 × 102 | 5.26 × 10−4 | 0.5 | 2.54 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, V.V.; Pismenny, A.; Larianovsky, N.; Lapteva, A.; Safranchik, D. Corrosion Resistance of Al–CNT Metal Matrix Composites. Materials 2021, 14, 3530. https://doi.org/10.3390/ma14133530
Popov VV, Pismenny A, Larianovsky N, Lapteva A, Safranchik D. Corrosion Resistance of Al–CNT Metal Matrix Composites. Materials. 2021; 14(13):3530. https://doi.org/10.3390/ma14133530
Chicago/Turabian StylePopov, Vladimir V., Alla Pismenny, Natalya Larianovsky, Anna Lapteva, and Daniel Safranchik. 2021. "Corrosion Resistance of Al–CNT Metal Matrix Composites" Materials 14, no. 13: 3530. https://doi.org/10.3390/ma14133530
APA StylePopov, V. V., Pismenny, A., Larianovsky, N., Lapteva, A., & Safranchik, D. (2021). Corrosion Resistance of Al–CNT Metal Matrix Composites. Materials, 14(13), 3530. https://doi.org/10.3390/ma14133530