The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. General Structure
3.2. Structural Influence of the Network Modifier Ions
3.3. Local Environment around Gd3+ Ions
3.4. Correlation of Rare Earth Luminescence and Gd3+ Coordination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, L.; Guo, X.; Li, X.; Li, L.; Zhang, G.; Yan, Y. Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass. Appl. Surf. Sci. 2013, 265, 889–894. [Google Scholar] [CrossRef]
- Mauro, J.C.; Tandia, A.; Vargheese, K.D.; Mauro, Y.Z.; Smedskjaer, M.M. Accelerating the Design of Functional Glasses through Modeling. Chem. Mater. 2016, 28, 4267–4277. [Google Scholar] [CrossRef]
- Wurth, R.; Muñoz, F.; Müller, M.; Rüssel, C. Crystal growth in a multicomponent lithia aluminosilicate glass. Mater. Chem. Phys. 2009, 116, 433–437. [Google Scholar] [CrossRef]
- Dittmer, M.; Rüssel, C. Colorless and high strength MgO/Al2O3/SiO2 glass–ceramic dental material using zirconia as nucleating agent. J. Biomed. Mater. Res. B 2012, 100B, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, M.; Yamamoto, C.F.; Bocker, C.; Rüssel, C. Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and without the addition of yttria. Solid State Sci. 2011, 13, 2146–2153. [Google Scholar] [CrossRef]
- Seidel, S.; Dittmer, M.; Höland, W.; Rüssel, C. High-strength, translucent glass-ceramics in the system MgO-ZnO-Al2O3-SiO2-ZrO2. J. Eur. Ceram. Soc. 2017, 37, 2685–2694. [Google Scholar] [CrossRef]
- Tiegel, M.; Hosseinabadi, R.; Kuhn, S.; Herrmann, A.; Rüssel, C. Young’s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses. Ceram. Int. 2015, 41, 7267–7275. [Google Scholar] [CrossRef]
- Ehrt, D.; Vu, H.T.; Herrmann, A.; Völksch, G. Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics. J. Adv. Mater. Res. 2008, 39–40, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Körner, J.; Hein, J.; Tiegel, M.; Kuhn, S.; Buldt, J.; Yue, F.; Seifert, R.; Herrmann, A.; Rüssel, C.; Kaluza, M.C. Investigation of Yb3+-doped alumino-silicate glasses for high energy class diode pumped solid state lasers. In Proceedings of the High-Power, High-Energy, and High-Intensity Laser Technology II, SPIE, Prague, Czech Republic, 13–16 April 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9513. [Google Scholar]
- Turki, R.; Zekri, M.; Herrmann, A.; Rüssel, C.; Maalej, R.; Damak, K. Optical properties of peralkaline aluminosilicate glasses doped with Sm3+. J. Alloys Compd. 2019, 806, 1339–1347. [Google Scholar] [CrossRef]
- Herrmann, A.; Tewelde, M.; Kuhn, S.; Tiegel, M.; Rüssel, C. The effect of glass composition on the luminescence properties of Sm3+ doped alumino silicate glasses. J. Non Cryst. Solids 2018, 502, 190–197. [Google Scholar] [CrossRef]
- Herrmann, A.; Kuhn, S.; Tiegel, M.; Rüssel, C.; Körner, J.; Klöpfel, D.; Hein, J.; Kaluza, M.C. Structure and fluorescence properties of ternary aluminosilicate glasses doped with samarium and europium. J. Mater. Chem. C 2014, 2, 4328–4337. [Google Scholar] [CrossRef]
- Herrmann, A.; Kuhn, S.; Tiegel, M.; Rüssel, C. Fluorescence properties of Eu3+-doped alumino silicate glasses. Opt. Mater. 2014, 37, 293–297. [Google Scholar] [CrossRef]
- Zekri, M.; Herrmann, A.; Turki, R.; Rüssel, C.; Maâlej, R.; Damak, K. Experimental and theoretical studies of Dy3+ doped alkaline earth aluminosilicate glasses. J. Lumin. 2019, 212, 354–360. [Google Scholar] [CrossRef]
- Assadi, A.; Herrmann, A.; Tewelde, M.; Damak, K.; Maalej, R.; Rüssel, C. Tb3+ as a probe for the molecular structure of mixed barium magnesium alumino silicate glasses. J. Lumin. 2018, 199, 384–390. [Google Scholar] [CrossRef]
- Assadi, A.; Herrmann, A.; Lachheb, R.; Damak, K.; Rüssel, C.; Maâlej, R. Experimental and theoretical spectroscopic study of erbium doped aluminosilicate glasses. J. Lumin. 2016, 176, 212–219. [Google Scholar] [CrossRef]
- Tiegel, M.; Herrmann, A.; Kuhn, S.; Rüssel, C.; Körner, J.; Klöpfel, D.; Seifert, R.; Hein, J.; Kaluza, M.C. Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications. Laser Phys. Lett. 2014, 11, 115811. [Google Scholar] [CrossRef]
- Cormier, L. Glasses: Aluminosilicates. Encycl. Mater. Tech. Ceram. Glasses 2021, 2, 496–518. [Google Scholar]
- Stebbins, J.F.; Wu, J.; Thompson, L.M. Interactions between network cation coordination and non-bridging oxygen abundance in oxide glasses and melts: Insights from NMR spectroscopy. Chem. Geol. 2013, 346, 34–46. [Google Scholar] [CrossRef]
- Neuville, D.R.; Cormier, L.; Montouillout, V.; Florian, P.; Millot, F.; Rifflet, J.-C.; Massiot, D. Structure of Mg-and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigations. Am. Min. 2008, 93, 1721–1731. [Google Scholar] [CrossRef]
- Stebbins, J.F.; Xu, Z. NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature 1997, 390, 60–62. [Google Scholar] [CrossRef]
- Toplis, M.J.; Dingwell, D.B.; Lenci, T. Peraluminous viscosity maxima in Na2O Al2O3 SiO2 liquids: The role of triclusters in tectosilicate melts. Geochim. Cosmochim. Acta 1997, 61, 2605–2612. [Google Scholar] [CrossRef]
- Iuga, D.; Morais, C.; Gan, Z.; Neuville, D.R.; Cormier, L.; Massiot, D. NMR heteronuclear correlation between quadrupolar nuclei in solids. J. Am. Chem. Soc. 2005, 127, 11540–11541. [Google Scholar] [CrossRef] [Green Version]
- Lodesani, F.; Menziani, M.C.; Hijiya, H.; Takato, Y.; Urata, S.; Pedone, A. Structural origins of the mixed alkali effect in alkali aluminosilicate glasses: Molecular dynamics study and its assessment. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Atila, A.; Ghardi, E.M.; Ouaskit, S.; Hasnaoui, A. Atomistic insights into the impact of charge balancing cations on the structure and properties of aluminosilicate glasses. Phys. Rev. B 2019, 100, 144109. [Google Scholar] [CrossRef]
- Zekri, M.; Erlebach, A.; Herrmann, A.; Damak, K.; Rüssel, C.; Sierka, M.; Maâlej, R. Structure Prediction of Rare Earth Doped BaO and MgO Containing Aluminosilicate Glasses–the Model Case of Gd2O3. Materials 2018, 11, 1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charpentier, T.; Okhotnikov, K.; Novikov, A.N.; Hennet, L.; Fischer, H.E.; Neuville, D.R.; Florian, P. Structure of strontium aluminosilicate glasses from molecular dynamics simulation, neutron diffraction, and nuclear magnetic resonance studies. J. Phys. Chem. B 2018, 122, 9567–9583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Y.; Du, J.; Smedskjaer, M.M.; Mauro, J.C. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J. Chem. Phys. 2013, 139, 044507. [Google Scholar] [CrossRef]
- Ganster, P.; Benoit, M.; Kob, W.; Delaye, J.-M. Structural properties of a calcium aluminosilicate glass from molecular-dynamics simulations: A finite size effects study. J. Chem. Phys. 2004, 120, 10172–10181. [Google Scholar] [CrossRef] [Green Version]
- Ganisetti, S.; Gaddam, A.; Kumar, R.; Balaji, S.; Mather, G.C.; Pascual, M.J.; Fabian, M.; Siegel, R.; Senker, J.; Kharton, V.V. Elucidating the formation of Al–NBO bonds, Al–O–Al linkages and clusters in alkaline-earth aluminosilicate glasses based on molecular dynamics simulations. Phys. Chem. Chem. Phys. 2019, 21, 23966–23977. [Google Scholar] [CrossRef]
- Greaves, G.N. EXAFS and the structure of glass. J. Non Cryst. Solids 1985, 71, 203–217. [Google Scholar] [CrossRef]
- Greaves, G.; Fontaine, A.; Lagarde, P.; Raoux, D.; Gurman, S. Local structure of silicate glasses. Nature 1981, 293, 611–616. [Google Scholar] [CrossRef]
- Kelly, J., III; Cordaro, J.; Tomozawa, M. Correlation effects on alkali ion diffusion in binary alkali oxide glasses. J. Non Cryst. Solids 1980, 41, 47–55. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Pedone, A.; Malavasi, G.; Menziani, M.C.; Cormack, A.N.; Segre, U. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 2006, 110, 11780–11795. [Google Scholar] [CrossRef] [PubMed]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Kokou, L.; Du, J. Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect. J. Non Cryst. Solids 2012, 358, 3408–3417. [Google Scholar] [CrossRef]
- Heuer, A. Exploring the potential energy landscape of glass-forming systems: From inherent structures via metabasins to macroscopic transport. J. Phys. Condens. Matter 2008, 20, 373101. [Google Scholar] [CrossRef]
- Debenedetti, P.G.; Stillinger, F.H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Sciortino, F.; Kob, W.; Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 1999, 83, 3214. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, W.; Shiga, M.; Mikami, M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B 2004, 69, 134103. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Haynes, W.M.; Lide, D.R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 91st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Du, J.; Cormack, A. The structure of erbium doped sodium silicate glasses. J. Non Cryst. Solids 2005, 351, 2263–2276. [Google Scholar] [CrossRef]
- Bardez, I.; Caurant, D.; Loiseau, P.; Baffier, N.; Dussossoy, J.L.; Gervais, C.; Ribot, F.; Neuville, D.R. Structural characterisation of rare earth rich glasses for nuclear waste immobilisation. Phys. Chem. Glasses 2005, 46, 320–329. [Google Scholar] [CrossRef]
- Pechenik, A.; Whitmore, D.; Susman, S.; Ratner, M.A. Transport in glassy fast-ion conductors: A stud of LiAlSiO4 glass. J. Non Cryst. Solids 1988, 101, 54–64. [Google Scholar] [CrossRef]
- Lee, S.K.; Stebbins, J.F. The degree of aluminum avoidance in aluminosilicate glasses. Am. Min. 1999, 84, 937–945. [Google Scholar] [CrossRef]
- Merzbacher, C.I.; Sherriff, B.L.; Hartman, J.S.; White, W.B. A high-resolution 29Si and 27Al NMR study of alkaline earth aluminosilicate glasses. J. Non Cryst. Solids 1990, 124, 194–206. [Google Scholar] [CrossRef]
- Thompson, L.M.; Stebbins, J.F. Non-bridging oxygen and high-coordinated aluminum in metaluminous and peraluminous calcium and potassium aluminosilicate glasses: High-resolution 17O and 27Al MAS NMR results. Am. Min. 2011, 96, 841–853. [Google Scholar] [CrossRef]
- Stebbins, J.F.; Dubinsky, E.V.; Kanehashi, K.; Kelsey, K.E. Temperature effects on non-bridging oxygen and aluminum coordination number in calcium aluminosilicate glasses and melts. Geochim. Cosmochim. Acta 2008, 72, 910–925. [Google Scholar] [CrossRef]
- Sadat, M.R.; Bringuier, S.; Muralidharan, K.; Runge, K.; Asaduzzaman, A.; Zhang, L. An atomistic characterization of the interplay between composition, structure and mechanical properties of amorphous geopolymer binders. J. Non Cryst. Solids 2016, 434, 53–61. [Google Scholar] [CrossRef]
- Smedskjaer, M.M.; Youngman, R.E.; Mauro, J.C. Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: Comparison with alkaline earth oxides. J. Non Cryst. Solids 2013, 381, 58–64. [Google Scholar] [CrossRef]
- Ren, M.; Cheng, J.Y.; Jaccani, S.P.; Kapoor, S.; Youngman, R.E.; Huang, L.; Du, J.; Goel, A. Composition–structure–property relationships in alkali aluminosilicate glasses: A combined experimental–computational approach towards designing functional glasses. J. Non Cryst. Solids 2019, 505, 144–153. [Google Scholar] [CrossRef]
- Le Roux, S.; Jund, P. Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems. Comput. Mater. Sci. 2010, 49, 70–83. [Google Scholar] [CrossRef]
Pair | Dij (eV) | aij (Å−1) | r0 (Å) | Cij (eV Å12) |
---|---|---|---|---|
Li0.6–O−1.2 | 0.001114 | 3.429506 | 2.681360 | 1.0 |
K0.6–O−1.2 | 0.011612 | 2.062605 | 3.305308 | 5.0 |
Si2.4–O−1.2 | 0.340554 | 2.006700 | 2.100000 | 1.0 |
Al1.8–O−1.2 | 0.361581 | 1.900442 | 2.164818 | 0.9 |
Gd1.8–O−1.2 | 0.000132 | 2.013000 | 4.351589 | 3.0 |
O−1.2–O−1.2 | 0.042395 | 1.379316 | 3.618701 | 22.0 |
Chemical Composition [mol%] | |||||
---|---|---|---|---|---|
Model | Unit Cell | NM2O | Al2O3 | SiO2 | Gd2O3 |
20Li | Gd2Li50Al50Si75O253 | 19.8 | 19.8 | 59.5 | 0.9 |
30Li | Gd2Li75Al25Si75O228 | 29.8 | 9.9 | 59.5 | 0.8 |
20K | Gd2K50Al50Si75O253 | 19.8 | 19.8 | 59.5 | 0.9 |
30K | Gd2K75Al25Si75O228 | 29.8 | 9.9 | 59.5 | 0.8 |
CN Fraction (Distance) | 20Li | 30Li | 20K | 30K |
---|---|---|---|---|
NM-O | 3.7 | 3.7 | 6.6 | 6.4 |
(2.01 Å) | (1.95 Å) | (2.67 Å) | (2.67 Å) | |
NM-NM | 2.9 | 4.9 | 4.3 | 5.2 |
31.5% | 46.7% | 34.1% | 43.0% | |
(2.61 Å) | (2.61 Å) | (3.39 Å) | (3.21 Å) | |
NM-Al | 2.5 | 1.4 | 2.7 | 1.5 |
27.2% | 13.3% | 21.4% | 12.4% | |
(3.03 Å) | (3.09 Å) | (3.54 Å) | (3.39 Å) | |
NM-Si | 3.8 | 4.2 | 5.6 | 5.4 |
41.3% | 40.0% | 44.4% | 44.6% | |
(3.15 Å) | (3.0 9Å) | (3.39 Å) | (3.45 Å) | |
ΣCN | 9.2 | 10.5 | 12.6 | 12.1 |
CN Fraction | 20Li | 30Li | 20K | 30K |
---|---|---|---|---|
NM-NBO | 1.2 | 1.9 | 1.2 | 2.0 |
32.4% | 51.4% | 18.2% | 31.2% | |
NM-BO | 2.5 | 1.7 | 5 | 4.3 |
67.6% | 45.9% | 75.7% | 67.2% | |
NM-Tri | 0.0 | 0.1 | 0.4 | 0.1 |
0.0% | 2.7% | 6.1% | 1.6% |
[AlOx] Fractions | 20Li | 30Li | 20K | 30K |
---|---|---|---|---|
[AlO3] | 0.7% | 0.3% | 1.1% | 0.8% |
[AlO4]− | 78.9% | 81.0% | 82.8% | 91.0% |
[AlO5]2− | 18.9% | 17.5% | 15.0% | 7.9% |
[AlO6]3− | 1.5% | 1.2% | 1.1% | 0.3% |
Qn Fractions | 20Li | 30Li | 20K | 30K |
---|---|---|---|---|
n = 0 | 0.0% | 0.1% | 0.0% | 0.1% |
n = 1 | 0.1% | 1.4% | 0.4% | 2.4% |
n = 2 | 3.0% | 12.4% | 5.0% | 14.4% |
n = 3 | 26.0% | 41.5% | 28.0% | 40.6% |
n = 4 | 70.9% | 44.6% | 66.6% | 42.5% |
CN Fraction (Distance) | 20Li | 30Li | 20K | 30K |
---|---|---|---|---|
Gd-O | 5.7 | 5.8 | 5.4 | 5.2 |
(2.25 Å) | (2.25 Å) | (2.19 Å) | (2.25 Å) | |
Gd-Al | 2.8 | 1.7 | 2.9 | 1.4 |
24.8% | 13.2% | 25.3% | 10.7% | |
(3.57 Å) | (3.51 Å) | (3.51 Å) | (3.63 Å) | |
Gd-Si | 4.6 | 5.2 | 4.0 | 4.5 |
40.7% | 40.3% | 34.9% | 34.3% | |
(3.57 Å) | (3.57 Å) | (3.57 Å) | (3.63 Å) | |
Gd-NM | 3.8 | 5.9 | 4.5 | 7.15 |
33.7% | 45.7% | 39.3% | 54.5% | |
(3.15 Å) | (3.09 Å) | (3.81 Å) | (3.75 Å) | |
Gd-Gd | 0.09 | 0.10 | 0.06 | 0.07 |
0.8% | 0.8% | 0.5% | 0.5% | |
(4.02 Å) | (3.9 Å) | (3.78 Å) | (4.14 Å) | |
Σ CN | 11.29 | 12.90 | 11.46 | 13.12 |
CN Fraction | 20Li | 30Li | 20K | 30K |
---|---|---|---|---|
Gd-NBO | 3.1 | 4.3 | 3.1 | 4.0 |
54.4% | 74.1% | 57.4% | 76.9% | |
Gd-BO | 2.5 | 1.5 | 2.2 | 1.2 |
43.9% | 25.9% | 40.7% | 23.1% | |
Gd-Tri | 0.1 | 0.0 | 0.1 | 0.0 |
1.7% | 0.0% | 1.9% | 0.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zekri, M.; Herrmann, A.; Erlebach, A.; Damak, K.; Rüssel, C.; Sierka, M.; Maâlej, R. The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials 2021, 14, 3265. https://doi.org/10.3390/ma14123265
Zekri M, Herrmann A, Erlebach A, Damak K, Rüssel C, Sierka M, Maâlej R. The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials. 2021; 14(12):3265. https://doi.org/10.3390/ma14123265
Chicago/Turabian StyleZekri, Mohamed, Andreas Herrmann, Andreas Erlebach, Kamel Damak, Christian Rüssel, Marek Sierka, and Ramzi Maâlej. 2021. "The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations" Materials 14, no. 12: 3265. https://doi.org/10.3390/ma14123265
APA StyleZekri, M., Herrmann, A., Erlebach, A., Damak, K., Rüssel, C., Sierka, M., & Maâlej, R. (2021). The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials, 14(12), 3265. https://doi.org/10.3390/ma14123265