Biodegradation of L-Valine Alkyl Ester Ibuprofenates by Bacterial Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ionic Liquids Used
2.2. Elemental Analysis
2.3. Chemicals and the Test Medium
2.4. Origin of Active Sludge Samples
NaHCO3 + HCl = CO2 + NaCl + H2O,
2.5. HPLC Analysis
2.6. Solubility Experiments
2.7. Determination of Partition Coefficient
3. Results and Discussion
3.1. Elemental Analysis
3.2. Biodegradation Studies
3.3. Solubility Experiments
3.4. Determination of Partition Coefficient
3.5. HPLC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wieczerzak, M.; Kudłak, B.; Namieśnik, J. Study of the Effect of Residues of Pharmaceuticals on the Environment on the Example of Bioassay Microtox®. Mon. Chem. 2016, 147, 1455–1460. [Google Scholar] [CrossRef]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, Partition and Removal of Pharmaceuticals in Sewage Water and Sludge during Wastewater Treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef]
- Larsson, E.; Rabayah, A.; Jönsson, J.Å. Sludge Removal of Nonsteroidal Anti-Inflammatory Drugs during Wastewater Treatment Studied by Direct Hollow Fiber Liquid Phase Microextraction. J. Environ. Prot. 2013, 4, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Shu, W.; Price, G.W.; Jamieson, R.; Lake, C. Biodegradation Kinetics of Individual and Mixture Non-Steroidal Anti-Inflammatory Drugs in an Agricultural Soil Receiving Alkaline Treated Biosolids. Sci. Total Environ. 2021, 755, 142520. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Klampfl, C.W. Metabolization of Pharmaceuticals by Plants after Uptake from Water and Soil: A Review. TrAC Trends Anal. Chem. 2019, 111, 13–26. [Google Scholar] [CrossRef]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging Contaminants of High Concern and Their Enzyme-Assisted Biodegradation—A Review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef]
- Rodarte-Morales, A.I.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Degradation of Selected Pharmaceutical and Personal Care Products (PPCPs) by White-Rot Fungi. World J. Microbiol. Biotechnol. 2011, 27, 1839–1846. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, J.; Zhu, R.; Zhou, Q.; Chen, J. Degradation of Paracetamol by Pure Bacterial Cultures and Their Microbial Consortium. Appl. Microbiol. Biotechnol. 2013, 97, 3687–3698. [Google Scholar] [CrossRef]
- Chen, Y.; Rosazza, J.P.N. Microbial Transformation of Ibuprofen by a Nocardia Species. Appl. Environ. Microbiol. 1994, 60, 1292–1296. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, R.W.; Hay, A.G. The Biotransformation of Ibuprofen to Trihydroxyibuprofen in Activated Sludge and by Variovorax Ibu-1. Biodegradation 2015, 26, 105–113. [Google Scholar] [CrossRef]
- Kagle, J.; Porter, A.W.; Murdoch, R.W.; Rivera-Cancel, G.; Hay, A.G. Chapter 3 Biodegradation of Pharmaceutical and Personal Care Products. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 67, pp. 65–108. ISBN 978-0-12-374802-7. [Google Scholar]
- Mackman, R.L.; Cihlar, T. Prodrug Strategies in the Design of Nucleoside and Nucleotide Antiviral Therapeutics. In Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 2004; Volume 39, pp. 305–321. ISBN 978-0-12-040539-8. [Google Scholar]
- Beauchamp, L.M.; Orr, G.F.; de Miranda, P.; Bumette, T.; Krenitsky, T.A. Amino Acid Ester Prodrugs of Acyclovir. Antivir. Chem. Chemother. 1992, 3, 157–164. [Google Scholar] [CrossRef]
- Perry, C.M.; Faulds, D. Valaciclovir: A Review of Its Antiviral Activity, Pharmacokinetic Properties and Therapeutic Efficacy in Herpesvirus Infections. Drugs 1996, 52, 754–772. [Google Scholar] [CrossRef]
- Ormrod, D.; Scott, L.J.; Perry, C.M. Valaciclovir: A Review of Its Long Term Utility in the Management of Genital Herpes Simplex Virus and Cytomegalovirus Infections. Drugs 2000, 59, 839–863. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Drach, J.C.; Prichard, M.N.; Yanachkova, M.; Yanachkov, I.; Bowlin, T.L.; Zemlicka, J. L-Valine Ester of Cyclopropavir: A New Antiviral Prodrug. Antivir. Chem. Chemother. 2009, 20, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanidis, D.; Brandl, M. Reactivity of Valganciclovir in Aqueous Solution. Drug Dev. Ind. Pharm. 2005, 31, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.; Noble, S. Valganciclovir. Drugs 2001, 61, 1145–1150. [Google Scholar] [CrossRef]
- Nunami, K.-I.; Suzuki, M.; Matsumoto, K.; Yoneda, N.; Takiguchi, K. Syntheses and Biological Activities of Isonitrile Dipeptides. Agric. Biol. Chem. 1984, 48, 1073–1075. [Google Scholar] [CrossRef]
- Nitta, S.; Komatsu, A.; Ishii, T.; Iwamoto, H.; Numata, K. Synthesis of Peptides with Narrow Molecular Weight Distributions via Exopeptidase-Catalyzed Aminolysis of Hydrophobic Amino-Acid Alkyl Esters. Polym. J. 2016, 48, 955–961. [Google Scholar] [CrossRef] [Green Version]
- Ossowicz, P.; Klebeko, J.; Janus, E.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Klimowicz, A. The Effect of Alcohols as Vehicles on the Percutaneous Absorption and Skin Retention of Ibuprofen Modified with l-Valine Alkyl Esters. RSC Adv. 2020, 10, 41727–41740. [Google Scholar] [CrossRef]
- Janus, E.; Ossowicz, P.; Klebeko, J.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Klimowicz, A. Enhancement of Ibuprofen Solubility and Skin Permeation by Conjugation with l-Valine Alkyl Esters. RSC Adv. 2020, 10, 7570–7584. [Google Scholar] [CrossRef] [Green Version]
- Hough, W.L.; Rogers, R.D. Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients. Bull. Chem. Soc. Jpn. 2007, 80, 2262–2269. [Google Scholar] [CrossRef]
- Pedro, S.N.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G. The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. Int. J. Mol. Sci. 2020, 21, 8298. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž. Ionic Liquids as Active Pharmaceutical Ingredients. ChemMedChem 2011, 6, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Adawiyah, N.; Moniruzzaman, M.; Hawatulaila, S.; Goto, M. Ionic Liquids as a Potential Tool for Drug Delivery Systems. Med. Chem. Commun. 2016, 7, 1881–1897. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Barber, P.S.; Rogers, R.D. Ionic Liquids in Drug Delivery. Expert Opin. Drug Deliv. 2013, 10, 1367–1381. [Google Scholar] [CrossRef]
- Quintana, J.; Weiss, S.; Reemtsma, T. Pathways and Metabolites of Microbial Degradation of Selected Acidic Pharmaceutical and Their Occurrence in Municipal Wastewater Treated by a Membrane Bioreactor. Water Res. 2005, 39, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Jastorff, B.; Mölter, K.; Behrend, P.; Bottin-Weber, U.; Filser, J.; Heimers, A.; Ondruschka, B.; Ranke, J.; Schaefer, M.; Schröder, H.; et al. Progress in Evaluation of Risk Potential of Ionic Liquids—Basis for an Eco-Design of Sustainable Products. Green Chem. 2005, 7, 362. [Google Scholar] [CrossRef]
- Jodynis-Liebert, J.; Nowicki, M.; Adamska, T.; Ewertowska, M.; Kujawska, M.; Petzke, E.; Konwerska, A.; Ostalska-Nowicka, D.; Pernak, J. Acute and Subacute (28-Day) Toxicity Studies of Ionic Liquid, Didecyldimethyl Ammonium Acesulfamate, in Rats. Drug Chem. Toxicol. 2009, 32, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Jodynis-Liebert, J.; Nowicki, M.; Murias, M.; Adamska, T.; Ewertowska, M.; Kujawska, M.; Piotrowska, H.; Konwerska, A.; Ostalska-Nowicka, D.; Pernak, J. Cytotoxicity, Acute and Subchronic Toxicity of Ionic Liquid, Didecyldimethylammonium Saccharinate, in Rats. Regul. Toxicol. Pharmacol. 2010, 57, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Gathergood, N.; Scammells, P.J.; Garcia, M.T. Biodegradable Ionic Liquids: Part III. The First Readily Biodegradable Ionic Liquids. Green Chem. 2006, 8, 156. [Google Scholar] [CrossRef]
- Coleman, D.; Gathergood, N. Biodegradation Studies of Ionic Liquids. Chem. Soc. Rev. 2010, 39, 600. [Google Scholar] [CrossRef]
- Studzińska, S.; Buszewski, B. Study of Toxicity of Imidazolium Ionic Liquids to Watercress (Lepidium sativum L.). Anal. Bioanal. Chem. 2009, 393, 983–990. [Google Scholar] [CrossRef]
- Khalaf, S.; Al-Rimawi, F.; Khamis, M.; Zimmerman, D.; Shuali, U.; Nir, S.; Scrano, L.; Bufo, S.A.; Karaman, R. Efficiency of Advanced Wastewater Treatment Plant System and Laboratory-Scale Micelle-Clay Filtration for the Removal of Ibuprofen Residues. J. Environ. Sci. Health Part B 2013, 48, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Wiedenbeck, E.; Kovermann, M.; Gebauer, D.; Cölfen, H. Liquid Metastable Precursors of Ibuprofen as Aqueous Nucleation Intermediates. Angew. Chem. Int. Ed. 2019, 58, 19103–19109. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.B.; Bonin, J.L.; Ardill, L.P.; Rourk, E.J.; Patterson, H.H.; Stemmler, E.A. Photocatalytic Degradation of Ibuprofen over BiOCl Nanosheets with Identification of Intermediates. J. Hazard. Mater. 2018, 358, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shanavas, S.; Priyadharsan, A.; Gkanas, E.I.; Acevedo, R.; Anbarasan, P.M. High Efficient Catalytic Degradation of Tetracycline and Ibuprofen Using Visible Light Driven Novel Cu/Bi2Ti2O7/RGO Nanocomposite: Kinetics, Intermediates and Mechanism. J. Ind. Eng. Chem. 2019, 72, 512–528. [Google Scholar] [CrossRef]
- Valkó, K.L. Lipophilicity and Biomimetic Properties Measured by HPLC to Support Drug Discovery. J. Pharm. Biomed. Anal. 2016, 130, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, T.; Mieszkowska, A.; Kempińska-Kupczyk, D.; Kot-Wasik, A.; Namieśnik, J.; Mazerska, Z. The Impact of Lipophilicity on Environmental Processes, Drug Delivery and Bioavailability of Food Components. Microchem. J. 2019, 146, 393–406. [Google Scholar] [CrossRef]
- Almeida, B.; Kjeldal, H.; Lolas, I.; Knudsen, A.D.; Carvalho, G.; Nielsen, K.L.; Barreto Crespo, M.T.; Stensballe, A.; Nielsen, J.L. Quantitative Proteomic Analysis of Ibuprofen-Degrading Patulibacter sp. Strain I11. Biodegradation 2013, 24, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Marco-Urrea, E.; Pérez-Trujillo, M.; Vicent, T.; Caminal, G. Ability of White-Rot Fungi to Remove Selected Pharmaceuticals and Identification of Degradation Products of Ibuprofen by Trametes Versicolor. Chemosphere 2009, 74, 765–772. [Google Scholar] [CrossRef]
- Escuder-Gilabert, L.; Martín-Biosca, Y.; Perez-Baeza, M.; Sagrado, S.; Medina-Hernández, M.J. Direct Chromatographic Study of the Enantioselective Biodegradation of Ibuprofen and Ketoprofen by an Activated Sludge. J. Chromatogr. A 2018, 1568, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Girardi, C.; Nowak, K.M.; Carranza-Diaz, O.; Lewkow, B.; Miltner, A.; Gehre, M.; Schäffer, A.; Kästner, M. Microbial Degradation of the Pharmaceutical Ibuprofen and the Herbicide 2,4-D in Water and Soil—Use and Limits of Data Obtained from Aqueous Systems for Predicting Their Fate in Soil. Sci. Total Environ. 2013, 444, 32–42. [Google Scholar] [CrossRef]
- Ajibola, A.S.; Adebiyi, A.O.; Nwaeke, D.O.; Ajibola, F.O.; Adewuyi, G.O. Analysis, Occurrence and Ecological Risk Assessment of Diclofenac and Ibuprofen Residues in Wastewater from Three Wastewater Treatment Plants in South-Western Nigeria. J. Appl. Sci. Environ. Manag. 2021, 25, 330–340. [Google Scholar] [CrossRef]
- Chang, E.D.; Town, R.M.; Owen, S.F.; Hogstrand, C.; Bury, N.R. Effect of Water PH on the Uptake of Acidic (Ibuprofen) and Basic (Propranolol) Drugs in a Fish Gill Cell Culture Model. Environ. Sci. Technol. 2021, 55, 6848–6856. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Chu, W.; Huang, Y.; Xu, L.; Chen, M.; Yan, M. Solar Photocatalytic Degradation of Ibuprofen with a Magnetic Catalyst: Effects of Parameters, Efficiency in Effluent, Mechanism and Toxicity Evolution. Environ. Pollut. 2021, 276, 116691. [Google Scholar] [CrossRef]
- Ponnusamy, G.; Farzaneh, H.; Tong, Y.; Lawler, J.; Liu, Z.; Saththasivam, J. Enhanced Catalytic Ozonation of Ibuprofen Using a 3D Structured Catalyst with MnO2 Nanosheets on Carbon Microfibers. Sci. Rep. 2021, 11, 6342. [Google Scholar] [CrossRef] [PubMed]
- Musson, S.E.; Campo, P.; Tolaymat, T.; Suidan, M.; Townsend, T.G. Assessment of the Anaerobic Degradation of Six Active Pharmaceutical Ingredients. Sci. Total Environ. 2010, 408, 2068–2074. [Google Scholar] [CrossRef]
- Trush, M.; Metelytsia, L.; Semenyuta, I.; Kalashnikova, L.; Papeykin, O.; Venger, I.; Tarasyuk, O.; Bodachivska, L.; Blagodatnyi, V.; Rogalsky, S. Reduced Ecotoxicity and Improved Biodegradability of Cationic Biocides Based on Ester-Functionalized Pyridinium Ionic Liquids. Environ. Sci. Pollut. Res. 2019, 26, 4878–4889. [Google Scholar] [CrossRef]
- Trush, M.M.; Semenyuta, I.V.; Hodyna, D.; Ocheretniuk, A.D.; Vdovenko, S.I.; Rogalsky, S.P.; Kalashnikova, L.E.; Blagodatnyi, V.; Kobzar, O.L.; Metelytsia, L.O. Functionalized Imidazolium-Based Ionic Liquids: Biological Activity Evaluation, Toxicity Screening, Spectroscopic, and Molecular Docking Studies. Med. Chem. Res. 2020, 29, 2181–2191. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Marques, C.S.; Rosatella, A.A.; Afonso, C.A.M.; Gonçalves, F.; Coutinho, J.A.P. Toxicity Assessment of Various Ionic Liquid Families towards Vibrio Fischeri Marine Bacteria. Ecotoxicol. Environ. Saf. 2012, 76, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Viboud, S.; Papaiconomou, N.; Cortesi, A.; Chatel, G.; Draye, M.; Fontvieille, D. Correlating the Structure and Composition of Ionic Liquids with Their Toxicity on Vibrio Fischeri: A Systematic Study. J. Hazard. Mater. 2012, 215–216, 40–48. [Google Scholar] [CrossRef]
- Montalbán, M.G.; Víllora, G.; Licence, P. Ecotoxicity Assessment of Dicationic versus Monocationic Ionic Liquids as a More Environmentally Friendly Alternative. Ecotoxicol. Environ. Saf. 2018, 150, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Steudte, S.; Stepnowski, P.; Cho, C.-W.; Thöming, J.; Stolte, S. (Eco)Toxicity of Fluoro-Organic and Cyano-Based Ionic Liquid Anions. Chem. Commun. 2012, 48, 9382. [Google Scholar] [CrossRef]
- Steudte, S.; Bemowsky, S.; Mahrova, M.; Bottin-Weber, U.; Tojo-Suarez, E.; Stepnowski, P.; Stolte, S. Toxicity and Biodegradability of Dicationic Ionic Liquids. RSC Adv. 2014, 4, 5198. [Google Scholar] [CrossRef]
The Half-Life of the Analyzed Compound | |||||
IBU | [ValOMe][IBU] | [ValOEt][IBU] | [ValOPr][IBU] | [ValOiPr][IBU] | [ValOBu][IBU] |
491.6 h | 305.8 h | 463.2 h | 308.9 h | 347.0 h | 568.4 h |
20.5 days | 12.7 days | 19.3 days | 12.9 days | 14.5 days | 23.7 days |
The Half-Life of the Analyzed Compound | |||||
[ValOAm][IBU] | [ValOHex][IBU] | [ValOHept][IBU] | [ValOOct][IBU] | SDS | |
(h/days) | |||||
561.8 h | 541.2 h | 623.1 h | 861.5 h | 162.3 h | |
23.4 days | 22.5 days | 26.0 days | 35.9 days | 6.8 days |
Compound Name | Phase of Degradation (%/h) | ||
---|---|---|---|
Lag Phase | Degradation Phase | Plateau Phase | |
IBU | 0–7 | 7–59 | 59–65 |
0–33 | 33–556 | 556–672 | |
[ValOMe][IBU] | 0–9 | 9–85 | 85–95 |
0–17 | 17–536 | 536–672 | |
[ValOEt][IBU] | 0–7 | 7–59 | 59–65 |
0–118 | 118–566 | 566–672 | |
[ValOPr][IBU] | 0–7 | 7–63 | 63–70 |
0–15 | 15–539 | 539–672 | |
[ValOiPr][IBU] | 0–8 | 8–69 | 69–77 |
0–34 | 34–517 | 517–672 | |
[ValOBu][IBU] | 0–6 | 6–54 | 54–60 |
0–20 | 20–603 | 603–672 | |
[ValOAm][IBU] | 0–6 | 6–54 | 54–60 |
0–48 | 48–603 | 603–672 | |
[ValOHex][IBU] | 0–6 | 6–51 | 51–57 |
0–46 | 46–555 | 555–672 | |
[ValOHept][IBU] | 0–5 | 5–49 | 49–54 |
0–65 | 65–596 | 596–672 | |
[ValOOct][IBU] | 0–4 | 4–35 | 35–39 |
0–37 | 37–524 | 524–672 | |
SDS | 0–9 | 9–78 | 78–87 |
0–15 | 15–537 | 537–672 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makuch, E.; Ossowicz-Rupniewska, P.; Klebeko, J.; Janus, E. Biodegradation of L-Valine Alkyl Ester Ibuprofenates by Bacterial Cultures. Materials 2021, 14, 3180. https://doi.org/10.3390/ma14123180
Makuch E, Ossowicz-Rupniewska P, Klebeko J, Janus E. Biodegradation of L-Valine Alkyl Ester Ibuprofenates by Bacterial Cultures. Materials. 2021; 14(12):3180. https://doi.org/10.3390/ma14123180
Chicago/Turabian StyleMakuch, Edyta, Paula Ossowicz-Rupniewska, Joanna Klebeko, and Ewa Janus. 2021. "Biodegradation of L-Valine Alkyl Ester Ibuprofenates by Bacterial Cultures" Materials 14, no. 12: 3180. https://doi.org/10.3390/ma14123180
APA StyleMakuch, E., Ossowicz-Rupniewska, P., Klebeko, J., & Janus, E. (2021). Biodegradation of L-Valine Alkyl Ester Ibuprofenates by Bacterial Cultures. Materials, 14(12), 3180. https://doi.org/10.3390/ma14123180