Terahertz Photoconductivity Spectra of Electrodeposited Thin Bi Films
Abstract
:1. Introduction
2. Layer Growth Methods and Structural Characterization
3. Ultrafast Measurements
3.1. Experimental Setup
3.2. Measurements
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartman, R. Temperature Dependence of the Low-Field Galvanomagnetic Coefficients of Bismuth. Phys. Rev. 1969, 181, 1070–1086. [Google Scholar] [CrossRef]
- Ogrin, Y.F.; Lutskii, V.N.; Elinson, M.I. Observation of Quantum Size Effects in Thin Bismuth Films. J. Exp. Theor. Phys. Lett. 1966, 3, 71. [Google Scholar]
- Huber, T.E.; Nikolaeva, A.; Gitsu, D.; Konopko, L.; Foss, C.A., Jr.; Graf, M.J. Confinement Effects and Surface-Induced Charge Carriers in Bi Quantum Wires. Appl. Phys. Lett. 2004, 84, 1326–1328. [Google Scholar] [CrossRef] [Green Version]
- Rogacheva, E.I.; Lyubchenko, S.G.; Dresselhaus, M.S. Semimetal–Semiconductor Transition in Thin Bi Films. Thin Solid Films 2008, 516, 3411–3415. [Google Scholar] [CrossRef]
- Butkutė, R.; Niaura, G.; Pozingytė, E.; Čechavičius, B.; Selskis, A.; Skapas, M.; Karpus, V.; Krotkus, A. Bismuth Quantum Dots in Annealed GaAsBi/AlAs Quantum Wells. Nanoscale Res. Lett. 2017, 12, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Xu, W.; Zeng, M.; Yao, G.; Shen, L.; Yang, M.; Luo, Z.; Pan, F.; Wu, K.; Das, T.; et al. Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi(110). Nano Lett. 2015, 15, 80–87. [Google Scholar] [CrossRef]
- Gity, F.; Ansari, L.; Lanius, M.; Schüffelgen, P.; Mussler, G.; Grützmacher, D.; Greer, J.C. Reinventing Solid State Electronics: Harnessing Quantum Confinement in Bismuth Thin Films. Appl. Phys. Lett. 2017, 110, 093111. [Google Scholar] [CrossRef] [Green Version]
- Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Ultrathin Bismuth Nanosheets from in Situ Topotactic Transformation for Selective Electrocatalytic CO2 Reduction to Formate. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, H.; Ge, L.; Zhang, X.; Hu, S.; Li, M.; Smart, S.; Zhu, Z.; Yuan, Z. Shape-Tuned Electrodeposition of Bismuth-Based Nanosheets on Flow-through Hollow Fiber Gas Diffusion Electrode for High-Efficiency CO2 Reduction to Formate. Appl. Catal. B Environ. 2021, 286, 119945. [Google Scholar] [CrossRef]
- Li, L.; Cai, F.; Qi, F.; Ma, D.-K. Cu Nanowire Bridged Bi Nanosheet Arrays for Efficient Electrochemical CO2 Reduction toward Formate. J. Alloys Compd. 2020, 841, 155789. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Xia, B.; Jin, H.; Zheng, Y.; Qiao, S.-Z. Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catal. 2019, 9, 2902–2908. [Google Scholar] [CrossRef]
- Shi, H.; Tang, C.; Wang, Z.; Zhang, Z.; Liu, W.; Ding, Y.; Shen, X. Nanoporous Bismuth Electrocatalyst with High Performance for Glucose Oxidation Application. Int. J. Hydrog. Energy 2021, 46, 4055–4064. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, C.; Zhang, S.; Hu, X.; Zhang, K.; Zhou, W.; Guo, S.; Xu, F.; Zeng, H. Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Lett. 2019, 19, 1118–1123. [Google Scholar] [CrossRef]
- Potenti, S.; Gualandi, A.; Puggioli, A.; Fermi, A.; Bergamini, G.; Cozzi, P.G. Photoredox Allylation Reactions Mediated by Bismuth in Aqueous Conditions. Eur. J. Org. Chem. 2021, 2021, 1624–1627. [Google Scholar] [CrossRef]
- Odularu, A.T. Bismuth as Smart Material and Its Application in the Ninth Principle of Sustainable Chemistry. J. Chem. 2020, 2020, 9802934. [Google Scholar] [CrossRef]
- Pauliukaitė, R.; Hočevar, S.B.; Ogorevc, B.; Wang, J. Characterization and Applications of a Bismuth Bulk Electrode. Electroanalysis 2004, 16, 719–723. [Google Scholar] [CrossRef]
- Pauliukaitė, R.; Brett, C.M.A. Characterization and Application of Bismuth-Film Modified Carbon Film Electrodes. Electroanalysis 2005, 17, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Grincienė, G.; Selskienė, A.; Verbickas, R.; Norkus, E.; Pauliukaite, R. Peculiarities of Electrochemical Bismuth Film Formation in the Presence of Bromide and Heavy Metal Ions. Electroanalysis 2009, 21, 1743–1749. [Google Scholar] [CrossRef]
- Sato, H.; Homma, T.; Kudo, H.; Izumi, T.; Osaka, T.; Shoji, S. Three-Dimensional Microfabrication Process Using Bi Electrodeposition for a Highly Sensitive X-Ray Imaging Sensor. J. Electroanal. Chem. 2005, 584, 28–33. [Google Scholar] [CrossRef]
- O’Brien, B.; Plaza, M.; Zhu, L.Y.; Perez, L.; Chien, C.L.; Searson, P.C. Magnetotransport Properties of Electrodeposited Bismuth Films. J. Phys. Chem. C 2008, 112, 12018–12023. [Google Scholar] [CrossRef]
- Moral-Vico, J.; Casañ-Pastor, N.; Camón, A.; Pobes, C.; Jáudenes, R.M.; Strichovanec, P.; Fàbrega, L. Microstructure and Electrical Transport in Electrodeposited Bi Films. J. Electroanal. Chem. 2019, 832, 40–47. [Google Scholar] [CrossRef]
- Prados, A.; Ranchal, R. Electrodeposition of Bi Films on H Covered N-GaAs(111)B Substrates. Electrochim. Acta 2019, 305, 212–222. [Google Scholar] [CrossRef]
- Coelho, D.; Gaudêncio, J.P.R.S.; Carminati, S.A.; Ribeiro, F.W.P.; Nogueira, A.F.; Mascaro, L.H. Bi Electrodeposition on WO3 Photoanode to Improve the Photoactivity of the WO3/BiVO4 Heterostructure to Water Splitting. Chem. Eng. J. 2020, 399, 125836. [Google Scholar] [CrossRef]
- Arlauskas, A.; Krotkus, A. THz Excitation Spectra of AIIIBV Semiconductors. Semicond. Sci. Technol. 2012, 27, 115015. [Google Scholar] [CrossRef]
- Ilyakov, I.E.; Shishkin, B.V.; Fadeev, D.A.; Oladyshkin, I.V.; Chernov, V.V.; Okhapkin, A.I.; Yunin, P.A.; Mironov, V.A.; Akhmedzhanov, R.A. Terahertz Radiation from Bismuth Surface Induced by Femtosecond Laser Pulses. Opt. Lett. OL 2016, 41, 4289–4292. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Auston, D.H. Optoelectronic Measurement of Semiconductor Surfaces and Interfaces with Femtosecond Optics. J. Appl. Phys. 1992, 71, 326–338. [Google Scholar] [CrossRef]
- Dekorsy, T.; Auer, H.; Waschke, C.; Bakker, H.J.; Roskos, H.G.; Kurz, H.; Wagner, V.; Grosse, P. Emission of Submillimeter Electromagnetic Waves by Coherent Phonons. Phys. Rev. Lett. 1995, 74, 738–741. [Google Scholar] [CrossRef] [Green Version]
- Bronner, C.; Tegeder, P. Relaxation Dynamics of Photoexcited Charge Carriers at the Bi(111) Surface. Phys. Rev. B 2014, 89, 115105. [Google Scholar] [CrossRef] [Green Version]
- Faure, J.; Mauchain, J.; Papalazarou, E.; Marsi, M.; Boschetto, D.; Timrov, I.; Vast, N.; Ohtsubo, Y.; Arnaud, B.; Perfetti, L. Direct Observation of Electron Thermalization and Electron-Phonon Coupling in Photoexcited Bismuth. Phys. Rev. B 2013, 88, 075120. [Google Scholar] [CrossRef] [Green Version]
- Tonouchi, M. Simplified Formulas for the Generation of Terahertz Waves from Semiconductor Surfaces Excited with a Femtosecond Laser. J. Appl. Phys. 2020, 127, 245703. [Google Scholar] [CrossRef]
- Hagemann, H.-J.; Gudat, W.; Kunz, C. Optical Constants from the Far Infrared to the X-Ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 1975, 65, 742–744. [Google Scholar] [CrossRef]
Chemicals | Concentration (M) |
---|---|
Bi(NO3)3∙5H2O | 0.15 |
HNO3 | 1.5 |
KNO3 | 1.0 |
Triton X-100 C14H22O(C2H4O)n n = 9–10 | 0.0015 |
Current density | 20 mA∙cm−2 |
Bath temperature | Room temperature |
Magnetic stirring | 500 rpm |
Electrodeposition rate | 500 nm∙min−1 |
pH | ~0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevinskas, I.; Mockus, Z.; Juškėnas, R.; Norkus, R.; Selskis, A.; Norkus, E.; Krotkus, A. Terahertz Photoconductivity Spectra of Electrodeposited Thin Bi Films. Materials 2021, 14, 3150. https://doi.org/10.3390/ma14123150
Nevinskas I, Mockus Z, Juškėnas R, Norkus R, Selskis A, Norkus E, Krotkus A. Terahertz Photoconductivity Spectra of Electrodeposited Thin Bi Films. Materials. 2021; 14(12):3150. https://doi.org/10.3390/ma14123150
Chicago/Turabian StyleNevinskas, Ignas, Zenius Mockus, Remigijus Juškėnas, Ričardas Norkus, Algirdas Selskis, Eugenijus Norkus, and Arūnas Krotkus. 2021. "Terahertz Photoconductivity Spectra of Electrodeposited Thin Bi Films" Materials 14, no. 12: 3150. https://doi.org/10.3390/ma14123150
APA StyleNevinskas, I., Mockus, Z., Juškėnas, R., Norkus, R., Selskis, A., Norkus, E., & Krotkus, A. (2021). Terahertz Photoconductivity Spectra of Electrodeposited Thin Bi Films. Materials, 14(12), 3150. https://doi.org/10.3390/ma14123150