# Simplified Determination of RHEED Patterns and Its Explanation Shown with the Use of 3D Computer Graphics

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methodology

## 3. Results and Discussion

#### 3.1. An Algorithm

#### 3.2. Features of the Software

#### 3.3. Detailed Diffraction Pattern

#### 3.4. Comparison with the Experimental Data

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Herman, M.A.; Sitter, H. Molecular Beam Epitaxy: Fundamentals and Current Status, 2nd ed.; Springer: Berlin, Germany, 1996. [Google Scholar]
- Przybylski, M.; Chakraborty, S.; Kirschner, J. Perpendicular magnetization in Fe/Ni bilayers on GaAs(001). J. Magn. Magn. Mater.
**2001**, 234, 505–519. [Google Scholar] [CrossRef] - Bauer, U.; Przybylski, M.; Kirschner, J.; Beach, G.S.D. Magnetoelectric charge trap memory. Nano Lett.
**2012**, 12, 1437–1442. [Google Scholar] [CrossRef] [PubMed][Green Version] - Eason, R. (Ed.) Pulsed Laser Deposition of Thin Films. Applications-Led Growth of Functional Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kusinski, J.; Kac, S.; Kopia, A.; Radziszewska, A.; Rozmus-Górnikowska, M.; Major, B.; Major, L.; Marczak, J.; Lisiecki, A. Laser modification of the materials surface layer—A review paper. Bull. Pol. Acad. Sci. Tech. Sci.
**2012**, 60, 711–728. [Google Scholar] [CrossRef] - Szwachta, G.; Gajewska, M.; Dłużewski, P.; Kąc, S.; Przybylski, M. Characterization of MgO/TiN bilayer deposited on cube-textured copper using pulsed-laser deposition technique. Thin Solid Films
**2019**, 692, 137621. [Google Scholar] [CrossRef] - Pawlak, J.; Żywczak, A.; Kanak, J.; Przybylski, M. Surface-Step-Induced Magnetic Anisotropy in Epitaxial LSMO Deposited on Engineered STO Surfaces. Materials
**2020**, 13, 4148. [Google Scholar] [CrossRef] [PubMed] - Ichimiya, A.; Cohen, P.I. Reflection High-Energy Electron Diffraction; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Daniluk, A. RHEED intensities from two-dimensional heteroepitaxial nanoscale systems. Comput. Phys. Commun.
**2014**, 185, 3001–3009. [Google Scholar] [CrossRef] - Huang, J.; Cai, C.Y.; Lv, C.L.; Zhou, G.W.; Wang, Y.G. An accurate dynamical electron diffraction algorithm for reflection high-energy electron diffraction. Philos. Mag.
**2015**, 95, 4095–4105. [Google Scholar] [CrossRef] - Peng, L.-M.; Dudarev, S.L.; Whelan, M.J. High-Energy Electron Diffraction and Microscopy; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Mitura, Z. RHEED from epitaxially grown thin films. Surf. Rev. Lett.
**1999**, 6, 497–516. [Google Scholar] [CrossRef] - Mitura, Z. Comparison of azimuthal plots for reflection high-energy positron diffraction (RHEPD) and reflection high-energy electron diffraction (RHEED) for Si(111) surface. Acta Cryst. A
**2020**, 76, 328–333. [Google Scholar] [CrossRef] [PubMed] - Mae, K.; Moshchalkov, V.V.; Bruynseraede, Y. Intensity profiles along the RHEED streaks for various thin film surface morphologies. Thin Solid Films
**1999**, 340, 145–152. [Google Scholar] [CrossRef] - Wang, K.; Smith, A.R. Efficient kinematical simulation of reflection high-energy electron diffraction streak patterns for crystal surfaces. Comput. Phys. Commun.
**2011**, 182, 2208–2212. [Google Scholar] [CrossRef] - Sokoll, R. The use of a computer program for the simulation of RHEED diffraction diagrams in the investigation of structural changes on quartz monocrystal surfaces. Surface Sci.
**1982**, 118, 165–179. [Google Scholar] [CrossRef] - Larsen, P.K.; Dobson, P.J.; Neave, J.H.; Joyce, B.A.; Bölger, B.; Zhang, J. Dynamic effects in RHEED from MBE grown GaAs(001) surfaces. Surface Sci.
**1986**, 169, 176–196. [Google Scholar] [CrossRef] - Mahan, J.E.; Geib, K.M.; Robinson, G.Y.; Long, R.G. A review of the geometrical fundamentals of reflection high-energy electron diffraction with application to silicon surfaces. J. Vac. Sci. Technol. A
**1990**, 8, 3692–3700. [Google Scholar] [CrossRef] - Ingle, N.J.C.; Yuskauskas, A.; Wicks, R.; Paul, M.; Leung, S. The structural analysis possibilities of reflection high energy electron diffraction. J. Phys. D Appl. Phys.
**2010**, 43, 133001. [Google Scholar] [CrossRef] - Shang, G.; Maiwald, L.; Renner, H.; Jalas, D.; Dosta, M.; Heinrich, S.; Petrov, A.; Eich, M. Photonic glass for high contrast structural color. Sci. Rep.
**2018**, 8, 7804. [Google Scholar] [CrossRef] [PubMed] - Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Barbour, L.J. EwaldSphere: An interactive approach to teaching the Ewald sphere construction. J. Appl. Cryst.
**2018**, 51, 1734–1738. [Google Scholar] [CrossRef] - De Padova, P.; Generosi, A.; Paci, B.; Ottaviani, C.; Quaresima, C.; Olivieri, B.; Kopciuszyński, M.; Żurawek, L.; Zdyb, R.; Krawiec, M. New findings on multilayer silicene on Si(111)√3×√3R30°–Ag template. Materials
**2019**, 12, 2258. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zdyb, R.; Stróżak, M.; Jałochowski, M. Gold-induced faceting on Si(533) surface studied by RHEED. Vacuum
**2001**, 63, 107–112. [Google Scholar] [CrossRef] - Hammond, C. The Basics of Crystallography and Diffraction, 3rd ed.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Humphreys, C.J. The scattering of fast electrons by crystals. Rep. Prog. Phys.
**1979**, 42, 1825–1887. [Google Scholar] [CrossRef] - OpenJDK Software. Available online: https://openjdk.java.net/ (accessed on 1 June 2021).
- JOGL Software. Available online: https://jogamp.org/jogl/www/ (accessed on 1 June 2021).
- Janert, P.K. Gnuplot in Action, 2nd ed.; Manning Publications Co.: Shelter Island, NY, USA, 2016. [Google Scholar]

**Figure 2.**Model of the fcc structure as taken into consideration for the incident beam azimuth [110].

**Figure 3.**Snapshot of the application for drawing the Ewald sphere and finding the distribution of spots at the screen.

**Figure 4.**A skew view from a virtual camera that can be moved continuously to different observation points by a user of the application.

**Figure 5.**A top view from a virtual camera that can be moved continuously to different observation points by a user of the application.

**Figure 6.**A list of coordinates of the spots at the screen generated by the software (additionally values of $\sqrt{{Y}^{2}+{Z}^{2}}$ are displayed).

**Figure 8.**(

**a**) Experimental RHEED pattern for a TiO2-terminated, SrTiO3(001) surface; (

**b**) The pattern determined with the use of the Ewald geometrical construction.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kokosza, Ł.; Pawlak, J.; Mitura, Z.; Przybylski, M.
Simplified Determination of RHEED Patterns and Its Explanation Shown with the Use of 3D Computer Graphics. *Materials* **2021**, *14*, 3056.
https://doi.org/10.3390/ma14113056

**AMA Style**

Kokosza Ł, Pawlak J, Mitura Z, Przybylski M.
Simplified Determination of RHEED Patterns and Its Explanation Shown with the Use of 3D Computer Graphics. *Materials*. 2021; 14(11):3056.
https://doi.org/10.3390/ma14113056

**Chicago/Turabian Style**

Kokosza, Łukasz, Jakub Pawlak, Zbigniew Mitura, and Marek Przybylski.
2021. "Simplified Determination of RHEED Patterns and Its Explanation Shown with the Use of 3D Computer Graphics" *Materials* 14, no. 11: 3056.
https://doi.org/10.3390/ma14113056