Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT–CNT Sensor
Abstract
:1. Introduction
2. Methodology
2.1. Use of CNTs as Sensors
2.2. Fabrication of CNT Specimens
2.3. PZT Sensor
2.4. Casting the Hybrid PZT–CNT Sensor in Concrete
3. Experimental Setup
3.1. Data Acquisition Process
3.2. Concrete Mixtures
3.3. Structural Response and EMI
3.4. Fuzzy Logic Tool
4. Results and Discussion
4.1. Maturity Method Data
4.2. Hybrid PZT–CNT Sensor Data Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNT | Carbon nanotube |
EMI | Electromechanical impedance |
NDT | Nondestructive testing |
SWNTs | Single-walled nanotubes |
UTM | Universal testing machine |
MWNTs | Multi-walled nanotubes |
APC | American piezoceramics |
SHM | Structural health monitoring |
PZT | Piezoelectric |
CC | Cross-correlation |
ASTM | American Society for Testing and Materials |
References
- Shin, S.W.; Qureshi, A.R.; Lee, J.Y.; Yun, C.B. Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete. Smart Mater. Struct. 2008, 17, 055002. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Guidebook on Non-Destructive Testing of Concrete Structures (IAEA-TCS-17); International Atomic Energy Agency (IAEA): Vienna, Austria, 2002. Available online: https://www-pub.iaea.org/mtcd/publications/pdf/tcs-17_web.pdf (accessed on 4 November 2020).
- Sýkora, M.; Diamantidis, D.; Holický, M.; Markova, J.; Rózsás, A. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Constr. Build. Mater. 2018, 193, 196–210. [Google Scholar] [CrossRef]
- Zinno, R.; Artese, S.; Clausi, G.; Magaro, F.; Meduri, S.; Miceli, A.; Venneri, A. Structural health monitoring (SHM). In The Internet of Things for Smart Urban Ecosystem; Springer: Cham, Switzerland, 2019; pp. 225–249. [Google Scholar]
- James, H.; Massoud, S.; Priyan, M. Non-Destructive Testing of Concrete: A Review of Methods. Electron. J. Struct. Eng. 2015, 14, 97–105. [Google Scholar]
- Gu, H.; Song, G.; Dhonde, H.; Mo, Y.L.; Yan, S. Concrete early-age strength monitoring using embedded piezoelectric transducers. Smart Mater. Struct. 2006, 15, 1837–1845. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Kwong, K.Z.; Liew, W.Y.H.; Chee, K.S. Non-destructive concrete strength evaluation using smart piezoelectric transducer—a comparative study. Smart Mater. Struct. 2016, 25, 085021. [Google Scholar] [CrossRef]
- Cédric, D.; Grigoris, K.; Jérôme, C.; Stéphanie, S.; Arnaud, D. Monitoring of the ultrasonic P-wave velocity in early-age concrete with embedded piezoelectric transducers. Smart Mater. Struct. 2012, 21, 047001. [Google Scholar]
- Kim, J.W.; Park, S.H. MFL sensing and ANN pattern recognition based automated damage detection and quantification for wire rope NDE. Sensors 2018, 18, 267–276. [Google Scholar]
- Kim, J.; Kim, J.W.; Lee, C.; Park, S. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges. Sensors 2017, 17, 1989. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.K.; Kim, J.; Lee, C.; Park, S. Nondestructive Concrete Strength Estimation based on Electro-Mechanical Impedance with Artificial Neural Network. J. Adv. Concr. Technol. 2017, 15, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Chalioris, C.E.; Karayannis, C.G.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P. Application of smart piezoelectric materials in a wireless admittance monitoring system. (WiAMS) to structure—Test in RC elements. Case Stud. Constr. Mater. 2016, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Priya, B.; Thiyagarajan, J.; Monica, B.; Gopalakrishnan, N.; Rao, A. EMI based monitoring of early-age characteristics of concrete and comparison of serial/parallel multi-sensing technique. Constr. Build. Mater. 2018, 191, 1268–1284. [Google Scholar] [CrossRef]
- ASTM, S. Standard practice for estimation concrete strength by the Maturity Method. ASTM C 2004, 1074, 1074–1093. [Google Scholar]
- Carino, N.J.; Lew, H.S. The maturity method: From theory to application. In Proceedings of the 2001 Structures Congress & Exposition, Washington, WA, USA, 21–23 May 2001; p. 19. Available online: https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=860356 (accessed on 13 October 2020).
- Blaschke, J.H.V.; Torrico, F.A. Estimaing concrete strength using the correlation of the concrete maturity method applied to the mattrials of Cochabamba-Bolivia. Rev. Investig. Desarro. 2018, 18, 117–127. [Google Scholar] [CrossRef]
- Malhotra, V.M.; Carino, N.J. Handbook on Nondestructive Testing of Concrete, 2nd ed.; CRC Press: Florida, FL, USA, 2003; pp. 39–381. [Google Scholar]
- Bungey, J.H.; Grantham, M.G. Testing of Concrete in Structures; CRC Press: London, UK, 2014; pp. 18–331. [Google Scholar]
- Park, S.; Kim, J.-W.; Lee, C.; Park, S.-K. Impedance-based wireless Debonding condition monitoring of CFRP Laminated Concrete structure. NDT E Int. 2011, 44, 232–238. [Google Scholar] [CrossRef]
- Costas, P.P.; Stavros, E.T.; Evangelos, V.L. 2-D Statistical Damage Detection of Concrete Structures Combining Smart Piezoelectric Materials and Scanning Laser Doppler Vibrometry. SDHM Struct. Durab. Health Monit. 2018, 12, 257–279. [Google Scholar]
- Reinhardt, H.W.; Grosse, C.U. Continuous monitoring of setting and hardening of mortar and concrete. Constr. Build. Mater. 2004, 18, 145–154. [Google Scholar] [CrossRef]
- Bhalla, S.; Soh, C.K. Structural health monitoring by piezo-impedance transducers. J. Aerosp. Eng. 2004, 17, 154–165. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Meyyappan, M. (Ed.) Carbon Nanotubes–Science and applications; CRC Press: London, UK, 2005. [Google Scholar]
- Grunlan, J.C.; Mehrabi, A.R.; Bannon, M.V.; Bahr, J.L. Water-based single-wallednanotube- filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 2004, 16, 150–153. [Google Scholar] [CrossRef]
- Blanchet, G.B.; Subramoney, S.; Bailey, R.K.; Jaycox, G.D.; Nuckolls, C. Sel-assembled three-dimensional conducting network of single-wall carbon nanotubes. Appl. Phys. Lett. 2004, 85, 828–830. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Shin, T.S.; Choi, H.D.; Kwon, J.H.; Chung, Y.-C.; Yoon, H.G. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 2005, 43, 23–30. [Google Scholar] [CrossRef]
- Manzano, H.; Enyashin, A.N.; Dolado, J.S.; Ayuela, A.; Frenzel, J.; Seifert, G. Do Cement Nanotubes Exist? Adv. Mater. 2012, 24, 3239–3245. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.R.; Johnson, A.T.C.; Klein, M.L. Probing the Structure of DNA-Carbon Nanotube Hybrids with Molecular Dynamics. Nano Lett. 2008, 8, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Dharap, P.; Li, Z.; Nagarajaiah, S.; Barrera, E.V. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 2004, 15, 379–382. [Google Scholar] [CrossRef]
- Dang, Z.M.; Jian, M.J.; Xie, D.; Yao, S.H.; Zhang, L.Q.; Bai, J.B. Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites. J. Appl. Phys. 2008, 104, 024114. [Google Scholar] [CrossRef]
- Grow, R.J.; Wang, Q.; Cao, J.; Wang, D.; Dai, H. Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 2005, 86, 093104. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Matthias, K.A.; Hristiyan, S.A.; Simon, L.; Guggi, K. Strongly enhanced sensitivity in elastic capacitive strain sensors. J. Mater. Chem. 2011, 21, 8292. [Google Scholar]
- Musab, Q.; Shaymaa, T.A. Behaviour of reinforced concrete beams with multiwall carbon nanotubes under monotonic loading. Eur. J. Environ. Civ. Eng. 2016, 22, 1–20. [Google Scholar]
- Gau, C.; Ko, H.S.; Chen, H.T. Piezoresistive characteristics of MWNTs nanocomposites and fabrication as polymer pressure sensor. Nanotechnology 2009, 20, 185503. [Google Scholar] [CrossRef]
- Amir, F.; Mina, H. CNT as a Sensor Platform. In Handbook of Research on Nanoelectronic Sensor Modeling and Applications; Advances in Computer and Electrical Engineering (ACEE) Book Series; IGI Global: Hershey, PA, USA, 2016. [Google Scholar]
- Mohsen, M.; Alansari, M.; Taha, R.; Alnuaimi, N.; Abu, T.A. Carbon Nanotube Effect on the Ductility, Flexural Strength, and Permeability of Concrete. J. Nanomater. 2019, 2019. [Google Scholar] [CrossRef]
- Mostafa, A. Concrete Pavement Prediction Life Model Based on Electrical Response of Concrete-CNTs Sensors under Fatigue Loading. Ph.D. Thesis, University of Politecnico di Torino, Turin, Italy, 2017. [Google Scholar] [CrossRef]
- MEtaxa, Z.S.; Pasiou, E.D.; Dakanali, I.; Stavrakas, I.; Triantis, D.; Kourkoulis, S.K. Carbon nanotube reinforced mortar as a sensor to monitor the structural integrity of restored marble epistyles under shear. In Proceedings of the 21st European Conference on Fracture, ECF21, Catania, Italy, 20–24 June 2016; pp. 2833–2840. [Google Scholar]
- Khan, W.; Sharma, R.; Saini, P. Chapter 1. IntechOpen, Rijeka, Croatia. In Carbon Nanotubes-Based Polymer Composites: Synthesis, Properties and Applications, Carbon Nanotubes-Current Progress and Their Polymer Composites; IntechOpen: London, UK, 2016; pp. 1–46. [Google Scholar] [CrossRef] [Green Version]
- Kiriaki, K.; Theodoros, T.; Aphrodite, T.; Bart, K.; Mamas, P.; Dimitrios, G. Synthesis and characterization of carbon nanotubes decorated with Pt and PtRu nanoparticles and assessment of their electrocatalytic performance. Int. J. Hydrog. Energy 2012, 37, 1243–1253. [Google Scholar]
- Kim, H.; Nam, I.; Lee, H. Microstructure and mechanical/EMI shielding characteristics of CNT/cement composites with various silica fume contents. In Proceedings of the UKC 2012 on Science, Technology, and Entrepreneurship, Los Angeles, CA, USA, 8–11 August 2012. [Google Scholar]
- Maeder, M.; Damjanovic, D.; Setter, N. Lead Free Piezoelectric Materials. J. Electroceram. 2004, 13, 385–392. [Google Scholar] [CrossRef]
- Sherrit, S.; Mukherjee, B.K. Characterization of Piezoelectric Materials for Transducers. arxiv 2017, arXiv:0711.2657. [Google Scholar]
- Voutetaki, M.E.; Papadopoulos, N.A.; Angeli, G.M.; Providakis, C.P. Investigation of a new experimental method for damage assessment of RC beam failing in shear using piezoelectric transducers. Eng. Struct. 2016, 114, 226–240. [Google Scholar] [CrossRef]
- Tareen, N.U.; Kim, J.K.; Kim, W.K.; Park, S.H. Comparative Analysis and Strength Estimation of Fresh Concrete Based on Ultrasonic Wave Propagation and Maturity Using Smart Temperature and PZT Sensors. Micromachines 2019, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.K.; Kim, J.; Lee, Y.S.; Park, S. Verification of pressure sensing sensitivity via EMI measurement of an external pipe for a membrane integrity test. Desalin Water Treat 2020, 200, 8–13. [Google Scholar] [CrossRef]
- ACI Committee 209. Creep Shrinkage Temperature in Concrete Structures; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Mehta, P.M.; Monteiro, P.J. Concrete, Microstructure, Properties and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Mirmiran, A.; Wei, Y. Demage assessment of FRP-Encased concrete using ultrasonic pulse velocity. J. Eng. Mech. 2001, 127, 126–135. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Rogers, C.A. The electromechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation. In Proceedings of the International Workshop on Structural Health Monitoring, Stanford, CA, USA, 18–20 September 1997. [Google Scholar]
- Kim, J.; Lee, C.; Park, S. Damage localization for CFRP-debonding defects using piezoelectric SHM techniques. Res. Nondestruct. Eval. 2012, 23, 183–196. [Google Scholar] [CrossRef]
- National Ready Mixed Concrete Association (NRMCA). Concrete in Practice. 2018. Available online: https://www.crmca.com/wp-content/uploads/2016/08/CIP-39-Maturity-Methods-to-Estimate-Concrete-Strength.pdf (accessed on 1 November 2020).
- Brown, T.L.; LeMay, H.E. Chemistry: The Central Science, 4th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; pp. 494–498. [Google Scholar]
WEB Series (APC Materials 850) | ||
---|---|---|
Size of the PZT | Specimen Thickness | 0.508 mm |
Dia | 10.00 mm | |
PZT charge constant, 10−12 m/v | d33 | 400 |
d31 | −175 | |
Electromechanical coupling factor | k33 | 0.72 |
k31 | 0.36 |
Specimen | W/C % | Unit Weight (kg/m3) | AD % | AE % | |||||
---|---|---|---|---|---|---|---|---|---|
W | C | GGBS 1 | S. Fume 2 | S | G | ||||
1 | 40 | 175 | 328 | 228 | 0 | 717 | 723 | 0 | 0 |
2 | 34 | 185 | 330 | 0 | 0.165 (0.05%) | 873 | 916 | 0.9 | 0.8 |
Sensor # | Parameters | Result | ||||||
---|---|---|---|---|---|---|---|---|
Curing Age (h) | W/C | Environment Temp. (°C) | Hydration Temp. (°C) | 1-CC | Maturity | Predicated Strength (MPa) | ||
Mixture Type 1 | S1 1 | 24 | 35 | 24 | 16.42 | 0.275 | 2765.3 | 4.312 |
72 | 35 | 24 | 16.55 | 0.83 | 46,572 | 8.701 | ||
168 | 35 | 24 | 16.73 | 0.91 | 345,365 | 12.474 | ||
336 | 35 | 24 | 19.71 | 0.79 | 586,347 | 15.554 | ||
672 | 35 | 24 | 19.36 | 0.77 | 913,456 | 18.788 | ||
S2 | 24 | 35 | 24 | 16.73 | 0.16 | 3634.7 | 4.124 | |
72 | 35 | 24 | 16.77 | 0.58 | 84,365 | 8.882 | ||
168 | 35 | 24 | 17.03 | 0.53 | 416,692 | 12.768 | ||
336 | 35 | 24 | 20.28 | 0.55 | 682,625 | 16.02 | ||
672 | 35 | 24 | 19.75 | 0.499 | 847,562 | 19.351 | ||
Mixture Type 2 | S1 | 24 | 31 | 24 | 15.89 | 0.8 | 4635.3 | 2.964 |
72 | 31 | 24 | 17.91 | 0.61 | 63,594 | 6.64 | ||
168 | 31 | 24 | 17.39 | 0.57 | 376,955 | 9.545 | ||
336 | 31 | 24 | 21.29 | 0.549 | 703,254 | 11.976 | ||
672 | 31 | 24 | 19.49 | 0.528 | 935,165 | 14.466 | ||
S2 | 24 | 31 | 24 | 16.33 | 0.88 | 3352.5 | 3.253 | |
72 | 31 | 24 | 17.43 | 1.1 | 76,222 | 6.565 | ||
168 | 31 | 24 | 17.47 | 1.12 | 383,462 | 9.412 | ||
336 | 31 | 24 | 21.6 | 0.83 | 65,769 | 11.73 | ||
672 | 31 | 24 | 19.1 | 0.82 | 872,399 | 14.176 | ||
S3 | 24 | 31 | 24 | 15.93 | 0.38 | 5301.5 | 3.8 | |
72 | 31 | 24 | 17.56 | 0.69 | 72,954 | 7.283 | ||
168 | 31 | 24 | 17.39 | 0.63 | 436,259 | 10.323 | ||
336 | 31 | 24 | 21.78 | 0.71 | 685,294 | 12.793 | ||
672 | 31 | 24 | 19.27 | 0.53 | 864,354 | 15.464 |
Curing Age (Day) | 1 | 2 | 3 | 7 | 14 | 21 | 28 |
---|---|---|---|---|---|---|---|
Conc. Type 1 Strength (MPa) | 4.2 | 6.75 | 8.6 | 11.6 | 14.4 | 17.8 | 19.1 |
Conc. Type 2 Strength (MPa) | 2.3 | 4.1 | 6.5 | 10 | 11.94 | 13.2 | 14.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tareen, N.; Kim, J.; Kim, W.-K.; Park, S. Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT–CNT Sensor. Materials 2021, 14, 2953. https://doi.org/10.3390/ma14112953
Tareen N, Kim J, Kim W-K, Park S. Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT–CNT Sensor. Materials. 2021; 14(11):2953. https://doi.org/10.3390/ma14112953
Chicago/Turabian StyleTareen, Najeebullah, Junkyeong Kim, Won-Kyu Kim, and Seunghee Park. 2021. "Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT–CNT Sensor" Materials 14, no. 11: 2953. https://doi.org/10.3390/ma14112953
APA StyleTareen, N., Kim, J., Kim, W.-K., & Park, S. (2021). Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT–CNT Sensor. Materials, 14(11), 2953. https://doi.org/10.3390/ma14112953