Influence of the β− Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins
Abstract
:1. Introduction
- Less stress on the interface of the bond, as the load is evenly distributed within a greater area, which leads to better integrity of the conjoined pieces.
- Vibration dampening, which increases rigidity and resistance to buckling.
- Significantly lower weight and superior adaptability to irregular surfaces in comparison to mechanical bonding.
- Ability to create water and gas tight bond, which disrupt neither the profile nor the aesthetics of the bonded part.
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. Cold Atmospheric-Pressure Plasma Surface Treatment
2.3. β− Radiation Surface Treatment
2.4. Adhesives and Construction of Bonded Joints
2.5. Wetting Contact Angle Measurements
2.6. Determination of Surface Energies
2.7. Measurement of Load-Bearing Capacity of Bonded Joints
2.8. Fourier-Transform Infrared (FTIR) Spectroscopy
2.9. Scanning Electron Microscopy (SEM)
3. Results
3.1. Surface-Layer Properties
3.2. Load-Bearing Capacity of Bonded Joints
4. Discussion
5. Conclusions
- β− radiation and cold plasma treatment had a positive effect on both the wetting and the surface energy of the tested material;
- the adhesive properties of the polymer specimens were significantly improved by both β− radiation and cold plasma treatment;
- the results proved, that β− radiation is at least on the similar level of effectiveness as plasma treatment, as far as improvements of adhesive bond’s strength and adhesiveness of PP are concerned; and
- two out of the three tested bonding agents, i.e., cyanoacrylate and two-component acrylate adhesive, provided higher bond strength when applied to the surface modified by β− radiation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanchis, M.; Blanes, V.; Blanes, M.; Garcia, D.; Balart, R. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur. Polym. J. 2006, 42, 1558–1568. [Google Scholar] [CrossRef]
- Friedman, M.; Walsh, G. High performance films: Review of new materials and trends. Polym. Eng. Sci. 2002, 42, 1756–1788. [Google Scholar] [CrossRef]
- Encinas, N.; Abenojar, J.; Martínez, M. Ángel Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications. Int. J. Adhes. Adhes. 2012, 33, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mourad, A.-H.I. Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater. Des. 2010, 31, 918–929. [Google Scholar] [CrossRef]
- Rotheiser, J. Joining of Plastics: Handbook for Designers and Engineers; Hanser Publishers: Munich, Germany, 2009; p. 592. ISBN 978-1-56990-445-9. [Google Scholar]
- Campo, E.A. The Complete Part Design Handbook: For Injection Molding of Thermoplastics; Hanser Publishers: Munich, Germany, 2006; p. 870. ISBN 1-5699-0375-1. [Google Scholar]
- Lapèíková, B.; Lapèík, L.; Smolka, P.; Dlabaja, R.; Hui, D. Application of radio frequency glow discharge plasma for enhancing adhesion bonds in polymer/polymer joints. J. Appl. Polym. Sci. 2006, 102, 1827–1833. [Google Scholar] [CrossRef]
- Manas, D.; Bednarik, M.; Mizera, A.; Manas, M.; Ovsik, M.; Stoklasek, P. Effect of beta radiation on the quality of the bonded joint for difficult to bond polyolefins. Polymers 2019, 11, 1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebnesajjad, S. Handbook of Adhesives and Surface Preparation: Technology, Applications and Manufacturing; Elsevier: Amsterdam, The Netherlands, 2011; p. 427. ISBN 978-1-4377-4461-3. [Google Scholar]
- Mandolfino, C.; Lertora, E.; Gambaro, C.; Pizzorni, M. Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties. Polymers 2019, 11, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebnesajjad, S. Surface Treatment of Materials for Adhesion Bonding; William Andrew Publishing: Norwich, NY, USA, 2006; p. 260. ISBN 0-8155-1523-5. [Google Scholar]
- Lehocký, M.; Drnovská, H.; Lapčíková, B.; Barros-Timmons, A.M.; Trindade, T.; Zembala, M.; Lačík, L., Jr. Plasma surface modification of polyethylene. Colloids Surf. A Physicochem. Eng. Asp. 2003, 222, 125–131. [Google Scholar] [CrossRef]
- Encinas, N.; Díaz-Benito, B.; Abenojar, J.; Martínez, M.A. Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf. Coat. Technol. 2010, 205, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Maurau, R.; Boscher, N.D.; Olivier, S.; Bulou, S.; Belmonte, T.; Dutroncy, J.; Sindzingre, T.; Choquet, P. Atmospheric pressure, low temperature deposition of photocatalytic TiOx thin films with a blown arc discharge. Surf. Coat. Technol. 2013, 232, 159–165. [Google Scholar] [CrossRef]
- Novak, I.; Popelka, A.; Krupa, I.; Chodák, I.; Janigová, I.; Nedelčev, T.; Špírková, M.; Kleinová, A. High-density polyethylene functionalized by cold plasma and silanes. Vacuum 2012, 86, 2089–2094. [Google Scholar] [CrossRef]
- Lackner, J.M.; Kahn, M.; Waldhauser, W. Plasma modification and deposition on inner tube faces by pulsed DC discharges. Vacuum 2011, 86, 144–150. [Google Scholar] [CrossRef]
- Van Deynse, A.; Cools, P.; Leys, C.; Morent, R.; De Geyter, N. Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces. Surf. Coat. Technol. 2014, 258, 359–367. [Google Scholar] [CrossRef]
- Kim, J.; Mauchauffé, R.; Kim, D.; Kim, J.; Moon, S.Y. Mechanism study of atmospheric-pressure plasma treatment of carbon fiber reinforced polymers for adhesion improvement. Surf. Coat. Technol. 2020, 393, 125841. [Google Scholar] [CrossRef]
- Darvish, F.; Sarkari, N.M.; Khani, M.; Eslami, E.; Shokri, B.; Mohseni, M.; Ebrahimi, M.; Alizadeh, M.; Dee, C.F. Direct plasma treatment approach based on non-thermal gliding arc for surface modification of biaxially-oriented polypropylene with post-exposure hydrophilicity improvement and minus aging effects. Appl. Surf. Sci. 2020, 509, 144815. [Google Scholar] [CrossRef]
- Klébert, S.; Tilajka, S.; Románszki, L.; Mohai, M.; Csiszár, E.; Károly, Z. Degradation phenomena on atmospheric air plasma treatment of polyester fabrics. Surf. Interfaces 2020, 22, 100826. [Google Scholar] [CrossRef]
- Makuuchi, K.; Cheng, S. Radiation Processing of Polymer Materials and its Industrial Applications; Wiley: Hoboken, NJ, USA, 2012; p. 415. ISBN 978-0-470-58769-0. [Google Scholar]
- Drobny, J.G. Ionizing Radiation and Polymers: Principles, Technology and Applications; Elsevier/William Andrew: Oxford, UK, 2013; p. 298. ISBN 978-1-4557-7881-2. [Google Scholar]
- Ovsik, M.; Manas, M.; Stanek, M.; Dockal, A.; Mizera, A.; Fluxa, P.; Martin, B.; Adámek, M. Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation. Materials 2020, 13, 929. [Google Scholar] [CrossRef] [Green Version]
- Ovsik, M.; Manas, M.; Stanek, M.; Dockal, A.; Vanek, J.; Mizera, A.; Adámek, M.; Stoklasek, P. Polyamide Surface Layer Nano-Indentation and Thermal Properties Modified by Irradiation. Materials 2020, 13, 2915. [Google Scholar] [CrossRef]
- Kopal, I.; Vršková, J.; Labaj, I.; Ondrušová, D.; Hybler, P.; Harničárová, M.; Valíček, J.; Kušnerová, M. The Effect of High-Energy Ionizing Radiation on the Mechanical Properties of a Melamine Resin, Phenol-Formaldehyde Resin, and Nitrile Rubber Blend. Materials 2018, 11, 2405. [Google Scholar] [CrossRef] [Green Version]
- Mizera, A.; Manas, M.; Manas, D.; Holik, Z.; Stanek, M.; Navrátil, J.; Martin, B. Temperature Stability of Modified PBT by Radiation Cross-Linking. Adv. Mater. Res. 2014, 1025, 256–260. [Google Scholar] [CrossRef]
- Bradler, P.R.; Fischer, J.; Wallner, G.M.; Lang, R.W. Characterization of Irradiation Crosslinked Polyamides for Solar Thermal Applications-Basic Thermo-Analytical and Mechanical Properties. Polymers 2018, 10, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Yang, S.; Chen, Y.; Liu, S.; Zhao, H.; Gu, J. 60Co γ-ray Irradiation Crosslinking of Chitosan/Graphene Oxide Composite Film: Swelling, Thermal Stability, Mechanical, and Antibacterial Properties. Polymers 2018, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, B.; Manas, D.; Ovsik, M.; Manas, M.; Stanek, M.; Sanda, S.; Kratky, P. Effect of Beta Irradiation on the Strength of Bonded Joints of HDPE. Key Eng. Mater. 2013, 586, 79–82. [Google Scholar] [CrossRef]
- Martin, B.; Manas, D.; Manas, M.; Ovsik, M.; Navrátil, J.; Mizera, A. Surface and Adhesive Properties of Low-Density Polyethylene after Radiation Cross-Linking. Key Eng. Mater. 2014, 606, 265–268. [Google Scholar] [CrossRef]
- Martin, B.; Manas, D.; Manas, M.; Stanek, M.; Navrátil, J.; Mizera, A. Effect of Ionizing Beta Radiation on the Strength of Bonded Joints of Polycarbonate. Adv. Mater. Res. 2014, 1025, 251–255. [Google Scholar] [CrossRef] [Green Version]
- CSN EN 1465. Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies; CEN: Brussels, Belgium, 2009. [Google Scholar]
- Relyon Plasma. Available online: https://www.relyon-plasma.com (accessed on 10 October 2020).
- ASTM 51261. Practice for Calibration of Routine Dosimetry Systems for Radiation Processing, 2nd ed.; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- EN 15802. Conservation of Cultural Property—Test Methods—Determination of Static Contact Angle; CEN: Brussels, Belgium, 2009. [Google Scholar]
- Kwok, D. The usefulness of the Lifshitz–van der Waals/acid–base approach for surface tension components and interfacial tensions. Colloids Surf. A Physicochem. Eng. Asp. 1999, 156, 191–200. [Google Scholar] [CrossRef]
- Erbil, H. Surface Chemistry of Solid and Liquid Interfaces; Blackwell: Oxford, UK, 2006; p. 352. ISBN 1-4051-1968-3. [Google Scholar]
- Kaelble, D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhes. 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Rabel, W. Aspekte der benetzungstheorie und ihre anwendung auf die untersuchung und veränderung der oberflächeneigenschaften von polymeren. Farbe Lacke 1971, 77, 997–1005. [Google Scholar]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 2003, 13, 1741–1747. [Google Scholar] [CrossRef]
- Fowkes, F.M. ATTRACTIVE FORCES AT INTERFACES. Ind. Eng. Chem. 1964, 56, 40–52. [Google Scholar] [CrossRef]
- Kwok, D.; Neumann, A. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Murray, K.A.; Kennedy, J.E.; McEvoy, B.; Vrain, O.; Ryan, D.; Higginbotham, C.L. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat. Phys. Chem. 2012, 81, 962–966. [Google Scholar] [CrossRef]
- Hama, Y.; Oka, T.; Uchiyama, J.; Kanbe, H.; Nabeta, K.; Yatagai, F. Long-term oxidative degradation in polyethylene irradiated with ion beams. Radiat. Phys. Chem. 2001, 62, 133–139. [Google Scholar] [CrossRef]
- Carpentieri, I.; Brunella, V.; Bracco, P.; Paganini, M.C.; Del Prever, E.M.B.; Luda, M.P.; Bonomi, S.; Costa, L. Post-irradiation oxidation of different polyethylenes. Polym. Degrad. Stab. 2011, 96, 624–629. [Google Scholar] [CrossRef]
- Costa, L.; Carpentieri, I.; Bracco, P. Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym. Degrad. Stab. 2008, 93, 1695–1703. [Google Scholar] [CrossRef]
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
Processing Conditions | PP |
Injection Rate (mm/s) | 50 |
Injection Pressure (MPa) | 80 |
Injection Time (s) | 0.5 |
Holding Pressure (MPa) | 40 |
Holding Time (s) | 10 |
Cooling Time (s) | 40 |
Mould Temperature (°C) | 50 |
Plastic Unit Temperature Bands | |
Zone 1 (°C) | 210 |
Zone 2 (°C) | 220 |
Zone 3 (°C) | 230 |
Zone 4 (°C) | 240 |
Adhesive Group | Adhesive Manufacturer | Adhesive Designation |
---|---|---|
Cyanoacrylate Adhesive | 3M | PR100 |
Two-Component Acrylate Adhesive | 3M | DP8805 NS |
Two-Component Epoxide Adhesive | 3M | DP100 |
Liquid | Reference | Plasma Power (W) | ||
---|---|---|---|---|
2.4 | 4 | 8 | ||
Distilled Water | (88.7 ± 0.3)° | (71.9 ± 0.1)° | (55.8 ± 0.3)° | (46.6 ± 0.2)° |
Glycerin | (81.6 ± 0.2)° | (63.2 ± 0.2)° | (55.4 ± 0.4)° | (46.8 ± 0.2)° |
Ethylene Glycol | (67.1 ± 0.2)° | (37.1 ± 0.1)° | (41.1 ± 0.4)° | (34.7 ± 0.3)° |
Liquid | Reference | Radiation Dose (kGy) | ||
---|---|---|---|---|
33 | 66 | 99 | ||
Distilled Water | (88.7 ± 0.3)° | (69.3 ± 0.3)° | (59.8 ± 0.1)° | (61.9 ± 0.4)° |
Glycerin | (81.6 ± 0.2)° | (58.3 ± 0.5)° | (56.9 ± 0.4)° | (57.1 ± 0.6)° |
Ethylene Glycol | (67.1 ± 0.2)° | (42.2 ± 0.4)° | (37.1 ± 0.2)° | (37.3 ± 0.3)° |
Free Surface Energy and Its Elements (mJ/m2) | Reference | Plasma Power (W) | ||
---|---|---|---|---|
2.4 | 4 | 8 | ||
γs | 22.6 | 37.1 | 45.1 | 54.4 |
γsp | 6.7 | 10.9 | 36.6 | 47.3 |
γsd | 15.9 | 26.2 | 8.5 | 7.1 |
Free Surface Energy and Its Elements (mJ/m2) | Reference | Radiation Dose (kGy) | ||
---|---|---|---|---|
33 | 66 | 99 | ||
γs | 22.6 | 36.7 | 41.1 | 39.6 |
γsp | 6.7 | 14.9 | 27.8 | 24.2 |
γsd | 15.9 | 21.8 | 13.3 | 15.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarik, M.; Mizera, A.; Manas, M.; Navratil, M.; Huba, J.; Achbergerova, E.; Stoklasek, P. Influence of the β− Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins. Materials 2021, 14, 76. https://doi.org/10.3390/ma14010076
Bednarik M, Mizera A, Manas M, Navratil M, Huba J, Achbergerova E, Stoklasek P. Influence of the β− Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins. Materials. 2021; 14(1):76. https://doi.org/10.3390/ma14010076
Chicago/Turabian StyleBednarik, Martin, Ales Mizera, Miroslav Manas, Milan Navratil, Jakub Huba, Eva Achbergerova, and Pavel Stoklasek. 2021. "Influence of the β− Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins" Materials 14, no. 1: 76. https://doi.org/10.3390/ma14010076
APA StyleBednarik, M., Mizera, A., Manas, M., Navratil, M., Huba, J., Achbergerova, E., & Stoklasek, P. (2021). Influence of the β− Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins. Materials, 14(1), 76. https://doi.org/10.3390/ma14010076