Blast Test and Failure Mechanisms of Soft-Core Sandwich Panels for Storage Halls Applications
Abstract
:1. Introduction
2. Materials and Methods
- Ambient air temperature Ta = 25 °C;
- Initial (default) atmospheric pressure Ps = 101.35 kPa;
- The fraction of available combustion for unconfined mass release α = 1%;
- Adiabatic flame temperature of the propane Tad(propane) = 1281 °C;
- Adiabatic flame temperature of the acetylene Tad(acetylene) = 2637 °C;
- Adiabatic flame temperature of the hydrogen Tad(hydrogen) = 2252 °C;
- The heat of combustion of the propane ΔHc(propane) = 46,360 kJ/kg;
- The heat of combustion of the acetylene ΔHc(acetylene) = 48,220 kJ/kg;
- The heat of combustion of the hydrogen ΔHc(hydrogen) = 130,800 kJ/kg.
3. Results
3.1. Analytical Approach
3.2. Sandwich Panel Subjected to Blast Load: Qualitative Response and Failure Mechanisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EN 1990:2002(en) Eurocode—Basis of Structural Design. Available online: https://shop.bsigroup.com/ProductDetail?pid=000000000030227154 (accessed on 29 November 2020).
- Berner, K.; Hassinen, P.; Heselius, L.; Izabel, D.; Käpplein, S.; Lange, J.; Misiek, T.; Rädel, F.; Tillonen, A.; Zupancic, D. New European Recommendations for the design and application of sandwich panels—Results of the work of the Joint Committee on Sandwich Constructions. Steel Constr. 2013, 6, 294–300. [Google Scholar] [CrossRef]
- EN 14509:2013(en) Self-Supporting Double Skin Metal Faced Insulating Panels-Factory Made Products–Specifications. Available online: https://shop.bsigroup.com/en/ProductDetail/?pid=000000000030266551 (accessed on 1 September 2020).
- Baehre, R.; Ladwein, T. Diaphragm action of sandwich panels. J. Constr. Steel Res. 1994, 31, 305–316. [Google Scholar] [CrossRef]
- Katnam, K.B.; Impe, R.V.; Lagea, G.; Strycker, M. Modelling of cold-formed steel sandwich purling-sheeting systems to estimate the rotational restraint. Thin-Walled Struct. 2007, 45, 584–590. [Google Scholar] [CrossRef]
- Dürr, M.; Misiek, T.; Saal, H. The torsional restraint of sandwich panels to resist the lateral torsional buckling of beams. Steel Constr. 2011, 4, 251–258. [Google Scholar] [CrossRef]
- Georgescu, M.; Ungureanu, V. Stabilisation of continuous Z-purlins by sandwich panels: Full scale experimental approach. Thin-Walled Struct. 2014, 81, 242–249. [Google Scholar] [CrossRef]
- Kujawa, M.; Szymczak, C.Z. Numerical and experimental investigation of rotational stiffness of zed-purlins connection with sandwich panels. Thin-Walled Struct. 2014, 75, 43–52. [Google Scholar] [CrossRef]
- Ciesielczyk, K.; Studziński, R. Experimental and numerical investigation of stabilization of thin-walled Z-beams by sandwich panels. J. Constr. Steel Res. 2017, 133, 77–83. [Google Scholar] [CrossRef]
- Ding, K.W.; Wang, G.; Yin, W.Y. Application of Composite Sandwich Panels in Construction Engineering. Appl. Mech. Mater. 2013, 291–294, 1172–1176. [Google Scholar] [CrossRef]
- Tonkin, P.S.; Berlemont, C.F. Gas Explosions In Buildings Part, I. Experimental Explosion Chamber. Fire Res. Notes 1974, 984, 1–23. Available online: http://www.iafss.org/publications/frn/984/-1/view/frn_984.pdf (accessed on 29 November 2020).
- Ames, S.A. Gas Explosions In Buildings Part 2. The Measurement Of Gas Explosion Pressures. Fire Res. Notes 1973, 985, 1–27. Available online: http://www.iafss.org/publications/frn/985/-1/view/frn_985.pdf (accessed on 29 November 2020).
- Molkov, V.V. Explosions in buildings: Modeling and interpretation of real accidents. Fire Saf. J. 1999, 33, 45–56. [Google Scholar] [CrossRef]
- Byfield, M.P. Behavior and Design of Commercial Multistory Buildings Subjected to Blast. J. Perform. Constr. Facil. 2006, 20, 324–329. [Google Scholar] [CrossRef]
- Olmati, P.; Petrini, F.; Bontempi, F. Numerical analyses for the structural assessment of steel buildings under explosions. Struct. Eng. Mech. 2013, 45, 803–819. [Google Scholar] [CrossRef] [Green Version]
- Sielicki, P.W.; Sumelka, W.; Łodygowski, T. Close range explosive loading on steel column in the framework of anisotropic viscoplasticity. Metals 2019, 9, 454. Available online: https://www.mdpi.com/2075-4701/9/4/454/pdf (accessed on 29 November 2020). [CrossRef] [Green Version]
- Al-Rifaie, H.; Sumelka, W. Improving the Blast Resistance of Large Steel Gates—Numerical Study. Materials 2020, 13, 2121. [Google Scholar] [CrossRef]
- Al-Rifaie, H.; Sumelka, W. The Development of a New Shock Absorbing Uniaxial Graded Auxetic Damper (UGAD). Materials 2019, 12, 2573. [Google Scholar] [CrossRef] [Green Version]
- Sielicki, P.W.; Łodygowski, T. Masonry wall behaviour under explosive loading. Eng. Fail. Anal. 2019, 104, 274–291. [Google Scholar] [CrossRef]
- Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A 1996, 27A, 1123–1131. [Google Scholar] [CrossRef]
- Tagarielli, V.L.; Deshpande, V.S.; Fleck, N.A. The dynamic response of composite sandwich beams to transverse impact. Int. J. Solids Struct. 2007, 44, 2442–2457. [Google Scholar] [CrossRef] [Green Version]
- Andrews, E.W.; Moussa, N.A. Failure mode maps for composite sandwich panels subjected to air blast loading. Int. J. Impact Eng. 2009, 36, 418–425. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, P.; Liu, J.; Cheng, Y.; Wang, H. Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading. Mar. Struct. 2019, 65, 343–361. [Google Scholar] [CrossRef]
- Abrate, S. Impulsive response of sandwich structures. Procedia Eng. 2014, 88, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Spuskanyuk, A.V.; Flores, S.E.; Hayhurst, D.R.; Hutchinson, J.W.; McMeeking, R.M.; Evans, A.G. The Response of Metallic Sandwich Panels to Water Blast. J. Appl. Mech. 2007, 74, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Nurick, G.N.; Langdon, G.S.; Chi, Y.; Jacob, N. Behaviour of sandwich panels subjected to intense air blast—Part 1: Experiments. Compos. Struct. 2009, 91, 433–441. [Google Scholar] [CrossRef]
- Karagiozova, D.; Nurick, G.N.; Langdon, G.S. Behaviour of sandwich panels subject to intense air blasts—Part 2: Numerical simulation. Compos. Struct. 2009, 91, 442–450. [Google Scholar] [CrossRef]
- Hassan, M.Z.; Guan, Z.W.; Cantwell, W.J.; Langdon, G.S.; Nurick, G.N. The influence of core density on the blast resistance of foam-based sandwich structures. Int. J. Impact Eng. 2012, 50, 9–16. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, Z.W.; Cantwell, W.J.; Liao, Y. The energy-absorbing behaviour of foam cores reinforced with composite rods. Compos. Struct. 2014, 116, 346–356. [Google Scholar] [CrossRef]
- Long, S.; Yao, X.; Wang, H.; Zhang, X. Failure analysis and modeling of foam sandwich laminates under impact loading. Compos. Struct. 2018, 197, 10–20. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, M.; Zhang, P.; Xiao, W.; Zhang, C.; Liu, J.; Hou, H. The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading—Experimental investigations. Int. J. Mech. Sci. 2018, 145, 378–388. [Google Scholar] [CrossRef]
- Jamil, A.; Guan, Z.W.; Cantwell, W.J.; Zhang, X.F.; Langdon, G.S.; Wang, Q.Y. Blast response of aluminium/thermoplastic polyurethane sandwich panels—Experimental work and numerical analysis. Int. J. Impact Eng. 2019, 127, 31–40. [Google Scholar] [CrossRef]
- Technical Catalog of Sandwich Panels with PIR Foam Core. Available online: https://pruszynski.com.pl/download.php?fid=f4274d68.pdf (accessed on 10 September 2020). (In English).
- Technical Catalog of Sandwich Panels with Mineral Wool Core. Available online: https://pruszynski.com.pl/download.php?fid=ed96eddb.pdf (accessed on 10 September 2020). (In Polish).
- Technical Catalog of Sandwich Panels with Expanded Polystyrene. Available online: https://pruszynski.com.pl/download.php?fid=43d03400.pdf (accessed on 10 September 2020). (In Polish).
- Studziński, R. Experimental investigation of the use of blind rivets in sandwich panels. J. Sandw. Struct. Mater. 2020. [Google Scholar] [CrossRef]
- Kreja, I. A literature review on computational models for laminated composite and sandwich panels. Cent. Eur. J. Eng. 2011, 1, 59–80. [Google Scholar] [CrossRef]
- European Technical Assessment ETA-17/0079 of 30/03/2017. Available online: https://export.byggtjeneste.no/api/media/6b53dfe5-6f45-4b89-b95c-4ef06b7b33b2?download=false (accessed on 10 September 2020). (In English).
- Dinenno, P. Sfpe Handbook of Fire Protection Engineering, 2nd ed.; National Fire Protection Association Society of Fire Protection Engineers: Quincy, MA, USA, 1995. [Google Scholar]
- Sielicki, P.W.; Stachowski, M. Implementation of Sapper-Blast-Module, a Rapid Prediction Software for Blast Wave Properties. Cent. Eur. J. Energetic Mater. 2015, 12, 473–486. [Google Scholar]
- Sachs, R.G. Dependence of Blast on Ambient Pressure and Temperature; BRL-466 Ballistic Research Laboratory: Aberdeen, MD, USA, 1944. [Google Scholar]
- Ullah, A.; Ahmad, F.; Jang, H.-W.; Kim, S.-W.; Hong, J.-W. Review of Analytical and Empirical Estimations for Incident Blast Pressure. KSCE J. Civ. Eng. 2017, 21, 2211–2225. [Google Scholar] [CrossRef]
- Sadovskiy, M.A. Mechanical effects of air shockwaves from explosions according to experiments. In Geophysics and Physics of Explosion; Sadovskiy, M.A., Ed.; Nauka Press: Moscow, Russian, 2004. [Google Scholar]
- Yin, X.; Gu, X.; Lin, F.; Kuang, X. Numerical Analysis of Blast Loads inside Buildings. In Computational Structural Engineering; Yuan, Y., Cui, J., Mang, H.A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 681–690. [Google Scholar] [CrossRef]
- Lee, J.H.S. Physics of Explosion; McGill University: Montreal, QC, Canada, 1984. [Google Scholar]
- Gough, G.S.; Elam, C.F.; de Bruyne, N.A. The stabilization of the thin sheet by a continuous support medium. J. R. Aeronaut. Soc. 1940, 44, 12–43. [Google Scholar] [CrossRef]
- Zenkert, D. Handbook of Sandwich Construction; Engineering Materials Advisory Services Ltd.: Queensland, Australia, 1997; ISBN 0947817964. [Google Scholar]
- Bozhevolnaya, E.; Thomsen, O.T.; Kildegaard, A.; Skvortsov, V. Local effects across core junctions in sandwich panels. Compos. Part B Eng. 2003, 34, 509–517. [Google Scholar] [CrossRef]
- Bozhevolnaya, E.; Lyckegaard, A.; Thomsen, O.T. Novel design of foam core junctions in sandwich panels. Compos. Part B Eng. 2008, 39, 185–190. [Google Scholar] [CrossRef]
Infrastructural Element | Quantity (−) | Mass of Flammable Vapor Release mF (kg) | Maximum Pressure Developed at Completion of Combustion Pmax (kPa) | Blast Wave Energy E (kJ) | Equivalent of TNT Mass WTNT (kg) |
---|---|---|---|---|---|
propane cylinder 20l 30 bar | 1 | 8 | 528.52 | 3807.8 | 0.82 |
6 | 6 × 8 = 48 | 22,252.8 | 4.95 | ||
acetylene cylinder 20l 200 bar | 2 | 2 × 4 = 8 | 989.69 | 3857.6 | 0.86 |
12 | 12 × 4 = 48 | 23,145.6 | 5.14 | ||
hydrogen cylinder 0.75l 150 bar | 1 | 9 | 858.75 | 15,839.9 | 3.52 |
2 | 2 × 9 = 18 | 23,753.3 | 5.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Studziński, R.; Gajewski, T.; Malendowski, M.; Sumelka, W.; Al-Rifaie, H.; Peksa, P.; Sielicki, P.W. Blast Test and Failure Mechanisms of Soft-Core Sandwich Panels for Storage Halls Applications. Materials 2021, 14, 70. https://doi.org/10.3390/ma14010070
Studziński R, Gajewski T, Malendowski M, Sumelka W, Al-Rifaie H, Peksa P, Sielicki PW. Blast Test and Failure Mechanisms of Soft-Core Sandwich Panels for Storage Halls Applications. Materials. 2021; 14(1):70. https://doi.org/10.3390/ma14010070
Chicago/Turabian StyleStudziński, Robert, Tomasz Gajewski, Michał Malendowski, Wojciech Sumelka, Hasan Al-Rifaie, Piotr Peksa, and Piotr W. Sielicki. 2021. "Blast Test and Failure Mechanisms of Soft-Core Sandwich Panels for Storage Halls Applications" Materials 14, no. 1: 70. https://doi.org/10.3390/ma14010070
APA StyleStudziński, R., Gajewski, T., Malendowski, M., Sumelka, W., Al-Rifaie, H., Peksa, P., & Sielicki, P. W. (2021). Blast Test and Failure Mechanisms of Soft-Core Sandwich Panels for Storage Halls Applications. Materials, 14(1), 70. https://doi.org/10.3390/ma14010070