Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Goal and Scope of the Analysis
2.2. Object and Plan of Analysis
2.3. System Boundary and Functional Unit
2.4. Life Cycle Inventory (LCI)
2.5. Life Cycle Impact Assessment (LCIA) Eco-Indicator 99 Method
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jasiulewicz-Kaczmarek, M.; Gola, A. Maint. 4.0 Technologies for Sustainable Manufacturing-an Overview. IFAC-PapersOnline 2019, 52, 91–96. [Google Scholar] [CrossRef]
- Michaelides, E.E.S. Alternative Energy Sources; Springer: Berlin, Germany, 2012; pp. 33–63. [Google Scholar]
- Zimmermann, T. Parameterized tool for site specific LCAs of wind energy converters. Int. J. Life Cycle Assess. 2013, 18, 49–60. [Google Scholar] [CrossRef]
- Kłos, Z. Ecobalancial assessment of chosen packaging processes in food industry. Int. J. Life Cycle Assess. 2002, 7, 309. [Google Scholar] [CrossRef]
- Dincer, I.; Midilli, A.; Kucuk, H. Progress in Sustainable Energy Technologies: Generating Renewable Energy; Springer: Cham, Switzerland, 2014; pp. 469–533. [Google Scholar]
- Bałdowska-Witos, P.; Kruszelnicka, W.; Kasner, R.; Tomporowski, A.; Flizikowski, J.; Mroziński, A. Impact of the plastic bottle production on the natural environment. Part 2. Analysis of data uncertainty in the assessment of the life cycle of plastic beverage bottles using the Monte Carlo technique. Przem. Chem. 2019, 10, 1668–1672. [Google Scholar]
- Piasecka, I. Badanie I Ocena Cyklu Życia Elektrowni Wiatrowych. Ph.D. Thesis, Poznań University of Technology, Poznań, Poland, 2014. [Google Scholar]
- Piasecka, I. Oddziaływania Procesorów Fotowoltaicznych Na Środowisko Naturalne. Ph.D. Thesis, University of Life Sciences in Lublin, Lublin, Poland, 2016. [Google Scholar]
- Kasner, R. Ocena Korzyści I Nakładów Cyklu Życia Elektrowni Wiatrowej. Ph.D. Thesis, Poznań University of Technology, Poznań, Poland, 2016. [Google Scholar]
- Alberts, H.; Greiner, S.; Seifert, H.; Kühne, U. Recycling of wind turbine rotor blades—Fact or fiction? Dewi Mag. 2009, 2, 34. [Google Scholar]
- Brondsted, P.; Lilholt, H.; Aage, L. Composite materials for wind power turbine blades. Annu. Rev. Mater. Res. 2005, 35, 505–538. [Google Scholar] [CrossRef]
- Conconi, M. Raport EWEA: Research Note Outline on Recycling Wind Turbines Blades; The European Wind Energy Association: Brussels, Belgium, 2012. [Google Scholar]
- Griffin, D.A. Blade System Design Studies Volume 1: Composite Technologies for Large Wind Turbine Blades; Sandia National Laboratories: Albuquerque, Mexico, 2002.
- Ziegler, L.; Gonzalez, E.; Rubert, T.; Smolka, U.; Melero, J. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renew. Sustain. Energy Rev. 2018, 82, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Piel, J.H.; Stetter, C.; Heumann, M.; Westbomke, M.; Breitner, M.H. Lifetime Extension, Repowering or Decommissioning? Decision Support for Operators of Ageing Wind Turbines. J. Phys. Conf. Ser. 2019, 1222, 012033. [Google Scholar] [CrossRef]
- Sun, H.; Gao, X.; Yang, H. Investigation into offshore wind farm repowering optimization in Hong Kong. Int. J. Low-Carbon Technol. 2019, 14, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Vargas, A.V.; Zenon, E.; Oswald, U.; Islas, J.M.; Guereca, L.P.; Manzini, F.L. Life cycle assessment: A case study of two wind turbines used in Mexico. Appl. Therm. Eng. 2015, 75, 1210–1216. [Google Scholar] [CrossRef]
- Wang, W.-C.; Teah, H.-Y. Life cycle assessment of small-scale horizontal axis wind turbines in Taiwan. J. Clean. Prod. 2016. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnavale, E.; Stanek, W. Environmental impacts of electricity production of micro wind turbines with vertical axis. Renew. Energy 2017. [Google Scholar] [CrossRef]
- Kouloumpis, V.; Sobolewski, R.A.; Yan, X. Performance and life cycle assessment of a small scale vertical axis wind turbine. J. Clean. Prod. 2019. [Google Scholar] [CrossRef]
- Alsaleh, A.; Sattler, M. Comprehensive Life cycle assessment of large wind turbines in the US. Clean Technol. Environ. Policy 2019, 21, 887–903. [Google Scholar] [CrossRef]
- International Organization for Standardization. Environmental Management: Life Cycle Assessment; Principles and Framework; No. 2006; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Doerffer, P.; Doerffer, K.; Ochrymiuk, T.; Telega, J. Variable Size Twin-Rotor Wind Turbine. Energies 2019, 12, 2543. [Google Scholar] [CrossRef] [Green Version]
- Guineé, J. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Springer: Berlin, Germany, 2002; pp. 395–644. [Google Scholar]
- Piasecka, I.; Bałdowska-Witos, P.; Piotrowska, K.; Tomporowski, A. Eco-energetical life cycle assessment of materials and components of photovoltaic power plant. Energies 2020, 13, 1385. [Google Scholar] [CrossRef] [Green Version]
- European Committee. Environmental Management-life Cycle Assessment-goal and Scope Definition and Inventory Analysis (ISO 14041-1998); Committee for Standardisation: Brüssel, Belgium, 1998; p. 27. [Google Scholar]
- Curran, M.A. Goal and Scope Definition in Life Cycle Assessment; Springer: Dordrecht, The Netherlands, 2017; pp. 1–167. [Google Scholar]
- Guinée, J.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Rydberg, T. Life Cycle Assessment: Past, present, and future. Environ. Sci. Technol. 2011, 1, 90–96. [Google Scholar] [CrossRef]
- Garrett, P.; Rendc, K. Life cycle assessment of wind power: Comprehensive results from a state-of-the-art approach. Int. J. Life Cycle Assess. 2013, 18, 37–48. [Google Scholar] [CrossRef]
- Klinglmair, M.; Sala, S.; Brandão, M. Assessing resource depletion in LCA: A review of methods and methodological issues. Int. J. Life Cycle Assess. 2014, 19, 580–592. [Google Scholar] [CrossRef]
- Toke, D. Ecological Modernization and Renewable Energy; Palgrave Macmillan: New York, NY, USA, 2011; pp. 167–179. [Google Scholar]
- Flizikowski, J.; Piasecka, I.; Kruszelnicka, W.; Tomporowski, A.; Mroziński, A. Destruction assessment of wind power plastics blade. Polimery 2018, 5, 55–60. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, S. Green Technologies and Environmental Sustainability; Springe: Cham, Switzerland, 2017; pp. 1–43. [Google Scholar]
- Mannheim, V. Empirical and scale-up modeling in stirred ball mills. Chem. Eng. Res. Des. 2011, 4, 405–409. [Google Scholar] [CrossRef]
- Rigatos, G.G. Intelligent Renewable Energy Systems: Modelling and Control; Springer: Cham, Switzerland, 2016; pp. 339–409. [Google Scholar]
- Mannheim, V.; Fehér, Z.; Siménfalvi, Z. Innovative solutions for the building industry to improve sustainability performance with Life Cycle Assessment modelling. In Solutions for Sustainable Development, 1st ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2019; pp. 245–253. [Google Scholar]
- Mannheim, V.; Siménfalvi, Z. Determining a Priority Order between Thermic Utilization Processes for Organic Industrial Waste with LCA; WIT Press: Southampton, UK, 2012; pp. 153–166. [Google Scholar]
- Corcelli, F.; Ripa, M.; Ulgiati, S. End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. J. Clean. Prod. 2017, 9, 1129–1142. [Google Scholar] [CrossRef]
- Goe, M.; Gaustad, G. Strengthening the case for recycling photovoltaics: An energy payback analysis. Appl. Energy 2014, 5, 41–48. [Google Scholar] [CrossRef]
- McLellan, B. Sustainable Future for Human Security. In Environment and Resources; Springer: Singapore, 2018; pp. 37–68. [Google Scholar]
- Kruszelnicka, W.; Bałdowska-Witos, P.; Kasner, R.; Flizikowski, J.; Tomporowski, A.; Rudnicki, J. Evaluation of emissivity and environmental safety of biomass grinders drive. Przem. Chem. 2019, 10, 1494–1498. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Liu, C.; Gu, G. Integrated Assessment Models of Climate Change Economics; Springer: Singapore, 2017; pp. 1–19. [Google Scholar]
- Bałdowska-Witos, P.; Kruszelnicka, W.; Kasner, R.; Rudnicki, J.; Tomporowski, A.; Flizikowski, J. Impact of the plastic bottle production on the natural environment. Part 1. Application of the ReCiPe 2016 assessment method to identify environmental problems. Przem. Chem. 2019, 10, 1662–1667. [Google Scholar] [CrossRef]
- Twidell, J.; Weir, T. Renewable Energy Resources; Routledge: London, UK, 2015; pp. 151–202. [Google Scholar] [CrossRef]
- Hossain, J.; Mahmud, A. Renewable Energy Integration. Challenges and Solutions; Springer Science + Business Media: Singapore, 2014; pp. 69–95. [Google Scholar] [CrossRef]
- Piasecka, I.; Bałdowska-Witos, P.; Flizikowski, J.; Piotrowska, K.; Tomporowski, A. Control the system and environment of post-production wind turbine blade waste using life cycle models. Part 1. Environmental transformation models. Polymers 2020, 12, 1828. [Google Scholar] [CrossRef]
- Traverso, M.; Asdrubali, F.; Francia, A.; Finkbeiner, M. Towards life cycle sustainability assessment: An implementation to photovoltaic modules. Int. J. Life Cycle Assess. 2012, 17, 1068–1079. [Google Scholar] [CrossRef]
- Piotrowska, K.; Kruszelnicka, W.; Bałdowska-Witos, P.; Kasner, R.; Rudnicki, J.; Tomporowski, A.; Flizikowski, J.; Opielak, M. Assessment of the Environmental Impact of a Car Tire throughout Its Life Cycle Using the LCA Method. Materials 2019, 12, 4177. [Google Scholar] [CrossRef] [Green Version]
- Lelek, Ł.; Kulczycka, J.; Lewandowska, A.; Zarębska, J. Life cycle assessment of energy generation in Poland. Int. J. Life Cycle Assess. 2016, 21, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Piasecka, I.; Tomporowski, A. Analysis of Environmental and Energetical Possibilities of Sustainable Development of Wind and Photovoltaic Power Plants. Probl. Sustain. Dev. 2018, 13, 125–130. [Google Scholar]
- Zacher, L.W. Technology, Society and Sustainability. Selected Concepts, Issues and Cases; Springer International Publishing: Cham, Switzerland, 2017; pp. 203–221. [Google Scholar] [CrossRef]
- Solmes, L.A. Energy Efficiency. Real Time Energy Infrastructure Investment and Risk Management; Springer: Dordrecht, The Netherlands, 2009; pp. 1–34. [Google Scholar] [CrossRef]
- Pre-Sustainability. Available online: https://www.pre-sustainability.com/legacy/download/EI99_Manual.pdf (accessed on 12 October 2020).
- European Circular Economy Stakeholder Platform. Available online: https://circulareconomy.europa.eu/platform/en/knowledge/metal-recycling-factsheet-euric (accessed on 12 October 2020).
Component | Element | Material | Total Mass (kg) | Al (kg) | Cu (kg) | Steel (kg) | Plastics/Kind (kg) | Neodymium (kg) | Other (kg) |
---|---|---|---|---|---|---|---|---|---|
Tower | |||||||||
Profile steel | Pipe | S365JR | 968.86 | - | - | 968.86 | - | - | - |
Plate | S365JR | 1068.02 | - | - | 1068.02 | - | - | - | |
Angle iron | S365JR | 3258.23 | - | - | 3258.23 | - | - | - | |
Square profile | S365JR | 776.70 | - | - | 776.70 | - | - | - | |
Welds | S365JR | 39.38 | - | - | 39.38 | - | - | - | |
Total profile steel | - | 6111.19 | 0 | 0 | 6111.19 | 0 | 0 | 0 | |
Tower connectors | Bolts | S365JR | 78.06 | - | - | 78.06 | - | - | - |
Washers | S365JR | 7.59 | - | - | 7.59 | - | - | - | |
Nuts | S365JR | 47.75 | - | - | 47.75 | - | - | - | |
Platform gratings | S365JR | 81.21 | - | - | 81.21 | - | - | - | |
Total connectors | - | 214.61 | 0 | 0 | 214.61 | 0 | 0 | 0 | |
Turbine service mechanism | Crane | S365JR | 282.45 | - | - | 282.45 | - | - | - |
Welds | S365JR | 1.50 | - | - | 1.50 | - | - | - | |
Winch mounting | S365JR | 6.50 | - | - | 6.50 | - | - | - | |
Winch | mix | 62.00 | - | - | 62.00 | 0.20 | - | - | |
Total turbine service mechanism | 352.65 | 0 | 0 | 352.45 | 0.20 | 0 | 0 | ||
Total Tower | - | 6678.45 | 0 | 0 | 6678.25 | 0.20 | 0 | 0 | |
Turbine structure | |||||||||
Profile steel | Plate | S365JR | 1264.62 | - | - | 1264.62 | - | - | - |
Pipe | S365JR | 986.10 | - | - | 986.10 | - | - | - | |
Square profile | S365JR | 301.59 | - | - | 301.59 | - | - | - | |
Rectangle Profile | S365JR | 717.51 | - | - | 717.51 | - | - | - | |
Welds | S365JR | 29.58 | - | - | 29.58 | - | - | - | |
Total profile steel | - | 3299.40 | 0 | 0 | 3299.40 | 0 | 0 | 0 | |
Turbine structure connectors | Bolts | S365JR | 6.96 | - | - | 6.96 | - | - | - |
Washers | S365JR | 0.54 | - | - | 0.54 | - | - | - | |
Nuts | S365JR | 4.20 | - | - | 4.20 | - | - | - | |
Total connectors | - | - | 11.70 | 0 | 0 | 11.70 | 0 | 0 | 0 |
Bearing-coupling system | Rotor bearings | Mix | 12.51 | - | - | 12.48 | 0.03 | - | - |
Turbine bearings | Mix | 72.06 | - | - | 72.00 | 0.06 | - | - | |
Bearing mountings | S365JR | 44.64 | - | - | 44.64 | - | - | - | |
Coupling system | Steel | 15.48 | - | - | 15.48 | - | - | - | |
Total bearing-coupling system | - | 144.69 | 0 | 0 | 144.60 | 0.09 | 0 | 0 | |
Total turbine structure | - | 3455.79 | 0 | 0 | 3455.70 | 0.09 | 0 | 0 | |
Rotors | |||||||||
Rotor 1 | Plate | S365JR | 326.32 | - | - | 326.32 | - | - | - |
Pipe | S365JR | 43.28 | - | - | 43.28 | - | - | - | |
Welds | Steel | 0.80 | - | - | 0.80 | - | - | - | |
Total rotor 1 | - | 370.40 | 0 | 0 | 370.40 | 0 | 0 | 0 | |
Rotor 2 | Plate | S365JR | 345.44 | - | - | 345.44 | - | - | - |
Pipe | S365JR | 43.28 | - | - | 43.28 | - | - | - | |
Welds | Steel | 1.60 | - | - | 1.60 | - | - | - | |
Total rotor 2 | - | 390.32 | 0 | 0 | 390.32 | 0 | 0 | 0 | |
Rotor 3 | Plate | S365JR | 415.36 | - | - | 415.36 | - | - | - |
Pipe | S365JR | 43.28 | - | - | 43.28 | - | - | - | |
Welds | Steel | 4.00 | - | - | 4.00 | - | - | - | |
Total rotor 3 | - | 462.64 | 0 | 0 | 462.64 | 0 | 0 | 0 | |
Total rotors | - | 1223.36 | 0 | 0 | 1223.36 | 0 | 0 | 0 | |
Generators | |||||||||
Generator | Generator | mix | 264.00 | 65.64 | 48.00 | 104.76 | 4.80 polypropylene (PP) | 36.00 | - |
4.80 polyethylene (PE) | |||||||||
Total generator | - | 264.00 | 65.64 | 48.00 | 104.76 | 9.60 | 36.00 | 0 | |
Instrumentation | |||||||||
Wiring | Turbine wiring (3 × 1.5 26.16 m) | mix | 2.36 | - | 0.92 | - | 1.44 (PVC) | - | - |
Tower wiring (3 × 1.5 29.62 m) | mix | 2.67 | - | 1.04 | - | 1.63 (PVC) | - | - | |
Turbine control module | Turbine control module | mix | 20.40 | 10.00 | 2.40 | 6.00 | - | - | 2.00 |
Commutator | Commutator | mix | 1.80 | 0.30 | 0.30 | 0.15 | 1.05 (PE) | - | - |
Total instrumentation | - | 27.23 | 10.30 | 4.66 | 6.15 | 4.12 | 0 | 2.00 | |
Total wind turbine | - | 11648.83 | 75.94 | 52.66 | 11468.22 | 14.01 | 36.00 | 2.00 |
Impact Categories | Unit | Tower | Turbine Structure | Rotor | Generator | Instrumentation |
---|---|---|---|---|---|---|
Carcinogens | DALY | 0.0004 | 0.0002 | 0.000072 | 0.0000064 | 0.00000038 |
Respiratory organics | DALY | 0.00001 | 0.0000057 | 0.0000019 | 0.0000007 | 0.00000014 |
Respiratory inorganics | DALY | 0.0063 | 0.0035 | 0.0012 | 0.0021 | 0.00019 |
Climate change | DALY | 0.0015 | 0.00083 | 0.00027 | 0.00012 | 0.000012 |
Radiation | DALY | 0 | 0 | 0 | 0 | 0 |
Ozone layer | DALY | 0 | 0 | 0 | 0 | 0 |
Ecotoxicity | PAF × m2 yr | 2759 | 1525 | 505 | 51 | 3.6 |
Acidification/Eutrophication | PDF × m2 yr | 273 | 150 | 50 | 48 | 4.4 |
Land use | PDF × m2 yr | 506 | 280 | 93 | 89 | 10 |
Minerals | MJ | 315 | 174 | 58 | 1958 | 187 |
Fossil fuels | MJ | 5257 | 2907 | 963 | 858 | 89 |
Impact Categories | Unit | Recycled Tower | Recycled Turbine Structure | Recycled Rotor | Recycled Generator | Recycled Instrumentation |
---|---|---|---|---|---|---|
Carcinogens | DALY | −0.00097 | −0.0005 | −0.00018 | −0.000053 | −0.0000066 |
Respiratory organics | DALY | 0.0000058 | 0.0000032 | 0.0000011 | −0.0000003 | −0.00000005 |
Respiratory inorganics | DALY | 0.0045 | 0.0025 | 0.00082 | 0.0016 | 0.00012 |
Climate change | DALY | −0.00085 | −0.00047 | −0.00016 | −0.00006 | −0.000011 |
Radiation | DALY | 0 | 0 | 0 | 0 | 0 |
Ozone layer | DALY | −0.000001 | −0.0000006 | −0.0000002 | −0.0000003 | −0.000000038 |
Ecotoxicity | PAF × m2 yr | 3005 | 1661 | 550 | −27 | −8.2 |
Acidification/Eutrophication | PDF × m2 yr | 200 | 110 | 37 | 37 | 2.8 |
Land use | PDF × m2 yr | 506 | 280 | 93 | 89 | 10 |
Minerals | MJ | −102 | −57 | −19 | 1830 | 168 |
Fossil fuels | MJ | 2425 | 1341 | 444 | 143 | −19 |
Impact Category | Unit | Profile Steel | Tower Connectors | Turbine Service Mechanism | Tower Total | Recycling | Tower Total Recycled |
---|---|---|---|---|---|---|---|
Carcinogens | DALY | 0.00036 | 0.000013 | 0.000021 | 0.0004 | −0.00137 | −0.00097 |
Respiratory organics | DALY | 0.0000095 | 0.00000003 | 0.0000005 | 0.00001 | 0.0000046 | 0.0000058 |
Respiratory inorganics | DALY | 0.0058 | 0.00021 | 0.00034 | 0.0063 | −0.0019 | 0.0045 |
Climate change | DALY | 0.0014 | 0.000048 | 0.000079 | 0.0015 | −0.0024 | −0.00085 |
Radiation | DALY | 0 | 0 | 0 | 0 | 0 | 0 |
Ozone layer | DALY | 0 | 0 | 0 | 0 | −0.000001 | −0.000001 |
Ecotoxicity | PAF × m2 yr | 2524 | 89 | 146 | 2759 | 246 | 3005 |
Acidification/Eutrophication | PDF × m2 yr | 250 | 8.8 | 14 | 273 | −73 | 200 |
Land use | PDF × m2 yr | 463 | 16 | 27 | 506 | 0 | 506 |
Minerals | MJ surplus | 288 | 10 | 17 | 315 | −418 | −102 |
Fossil fuels | MJ surplus | 4811 | 169 | 278 | 5257 | −2833 | 2425 |
Impact Category | Unit | Profile Steel | Turbine Structure Connectors | Bearing, Coupling System | Turbine Structure Total | Recycling | Turbine Structure Recycled |
---|---|---|---|---|---|---|---|
Carcinogens | DALY | 0.00021 | 0.0000006 | 0.0000086 | 0.0002 | −0.00076 | −0.0005 |
Respiratory organics | DALY | 0.0000055 | 0.0000000 | 0.00000023 | 0.0000057 | −0.0000025 | 0.0000032 |
Respiratory inorganics | DALY | 0.0034 | 0.00001 | 0.00014 | 0.0035 | −0.001 | 0.0025 |
Climate change | DALY | 0.0008 | 0.0000024 | 0.000033 | 0.00083 | −0.0013 | −0.00047 |
Radiation | DALY | 0 | 0 | 0 | 0 | 0 | 0 |
Ozone layer | DALY | 0.00000001 | 0 | 0 | 0 | −0.00000061 | −0.0000006 |
Ecotoxicity | PAF × m2 yr | 1461 | 4.34 | 60 | 1525 | 136 | 1661 |
Acidification/Eutrophication | PDF × m2 yr | 145 | 0.43 | 5.9 | 150 | −40 | 110 |
Land use | PDF × m2 yr | 268 | 0.8 | 11 | 280 | 0 | 280 |
Minerals | MJ surplus | 167 | 0.5 | 6.8 | 174 | −231 | −57 |
Fossil fuels | MJ surplus | 2785 | 8.2 | 115 | 2907 | −1566 | 1341 |
Impact Category | Unit | Generator | Recycling | Generator Recycled | Instrument-Ation | Recycling | Instrumentation Recycled |
---|---|---|---|---|---|---|---|
Carcinogens | DALY | 0.0000064 | −0.0000593 | −0.000053 | 0.00000038 | −0.000007 | −0.0000066 |
Respiratory organics | DALY | 0.0000007 | −0.0000011 | −0.0000003 | 0.00000014 | −0.0000002 | 0 |
Respiratory inorganics | DALY | 0.0021 | −0.00047 | 0.0016 | 0.0002 | −0.000071 | 0.00012 |
Climate change | DALY | 0.00012 | −0.00018 | −0.000059 | 0.000012 | −0.000024 | −0.000012 |
Radiation | DALY | 0 | 0 | 0 | 0 | 0 | 0 |
Ozone layer | DALY | 0 | −0.0000003 | −0.0000003 | 0 | 0 | 0 |
Ecotoxicity | PAF × m2 yr | 51 | −78 | −27 | 3.6 | −12 | −8.2 |
Acidification/Eutrophication | PDF × m2 yr | 48 | −11 | 37 | 4.4 | −1.7 | 2.8 |
Land use | PDF × m2 yr | 89 | 0 | 89 | 10 | 0 | 10 |
Minerals | MJ surplus | 1958 | −128 | 1830 | 187 | −19 | 168 |
Fossil fuels | MJ surplus | 858 | −715 | 143 | 89 | −109 | −19 |
Impact Category | Unit | Rotor 1 | Rotor 1 Recycled | Roto 2 | Rotor 2 Recycled | Rotor 5 | Rotor 5 Recycled |
---|---|---|---|---|---|---|---|
Carcinogens | DALY | 0.000022 | −0.000054 | 0.000023 | −0.000057 | 0.000027 | −0.000067 |
Respiratory organics | DALY | 0.0000006 | 0.0000003 | 0.0000006 | 0.0000003 | 0.0000007 | 0.0000004 |
Respiratory inorganics | DALY | 0.00035 | 0.00025 | 0.00037 | 0.00026 | 0.00044 | 0.00031 |
Climate change | DALY | 0.000083 | −0.000047 | 0.000088 | −0.00005 | 0.0001 | −0.000059 |
Radiation | DALY | 0 | 0 | 0 | 0 | 0 | 0 |
Ozone layer | DALY | 0 | −0.0000001 | 0 | −0.0000001 | 0 | −0.0000001 |
Ecotoxicity | PAF × m2 yr | 153 | 167 | 161 | 176 | 191 | 208 |
Acidification/Eutrophication | PDF × m2 yr | 15 | 11 | 16 | 12 | 19 | 14 |
Land use | PDF × m2 yr | 28 | 28 | 30 | 30 | 35 | 35 |
Minerals | MJ surplus | 17 | −5.7 | 18 | −6 | 22 | −7.1 |
Fossil fuels | MJ surplus | 292 | 135 | 307 | 142 | 364 | 168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doerffer, K.; Bałdowska-Witos, P.; Pysz, M.; Doerffer, P.; Tomporowski, A. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2. Materials 2021, 14, 220. https://doi.org/10.3390/ma14010220
Doerffer K, Bałdowska-Witos P, Pysz M, Doerffer P, Tomporowski A. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2. Materials. 2021; 14(1):220. https://doi.org/10.3390/ma14010220
Chicago/Turabian StyleDoerffer, Krzysztof, Patrycja Bałdowska-Witos, Michał Pysz, Piotr Doerffer, and Andrzej Tomporowski. 2021. "Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2" Materials 14, no. 1: 220. https://doi.org/10.3390/ma14010220
APA StyleDoerffer, K., Bałdowska-Witos, P., Pysz, M., Doerffer, P., & Tomporowski, A. (2021). Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2. Materials, 14(1), 220. https://doi.org/10.3390/ma14010220