Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object and Plan of Analysis
2.2. Determination of Goal and Scope
2.3. Life Cycle Inventory (LCI)
2.4. Life Cycle Impact Assessment (LCIA)
2.5. Interpretation
3. Results
3.1. Impact Categories
3.1.1. Carcinogens
3.1.2. Respiratory Organics
3.1.3. Respiratory Inorganics
3.1.4. Climate Change
3.1.5. Radiation
3.1.6. Ozone Layer
3.1.7. Ecotoxicity
3.1.8. Acidification/Eutrophication
3.1.9. Land Use
3.1.10. Minerals
3.1.11. Fossil Fuels
3.2. Areas of Influence
3.2.1. Human Health
3.2.2. Ecosystem Quality
3.2.3. Resources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tiwari, G.N.; Mishra, R.K. Advanced Renewable Energy Sources; Royal Society of Chemistry: Cambridge, UK, 2012; pp. 187–205. ISBN 978-1-84973-380-9. [Google Scholar]
- Jasiulewicz-Kaczmarek, M.; Gola, A. Maintenance 4.0 Technologies for Sustainable Manufacturing—An Overview. IFAC—PapersOnLine 2019, 10, 91–96. [Google Scholar] [CrossRef]
- Michaelides, E.E.S. Alternative Energy Sources; Springer: Berlin/Heidelberg, Germany, 2012; pp. 33–63. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Bałdowska-Witos, P.; Kasner, R.; Flizikowski, J.; Tomporowski, A.; Rudnicki, J. Evaluation of emissivity and environmental safety of biomass grinders drive. Przem. Chem. 2019, 10, 1494–1498. [Google Scholar] [CrossRef]
- Baniotopoulos, C.; Borri, C.; Stathopoulos, T. Environmental Wind Engineering and Design of Wind Energy Structures; Springer: Wien, Austria, 2011; pp. 31–93. [Google Scholar] [CrossRef]
- Brondsted, P.; Lilholt, H.; Aage, L. Composite materials for wind power turbine blades. Annu. Rev. Mater. Res. 2005, 8, 505–538. [Google Scholar] [CrossRef]
- Claire, P.L.; Barlow, Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 6, 229–240. [Google Scholar] [CrossRef]
- Zimmermann, T. Parameterized tool for site specific LCAs of wind energy converters. Int. J. Life Cycle Assess. 2013, 18, 49–60. [Google Scholar] [CrossRef]
- Muyeen, S.M. Wind Energy Conversion Systems: Technology and Trends; Springer: London, UK, 2012; pp. 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hossain, J.; Mahmud, A. Renewable Energy Integration: Challenges and Solutions; Springer: Singapore, 2014; pp. 125–144. [Google Scholar] [CrossRef]
- Piasecka, I.; Tomporowski, A. Analysis of Environmental and Energetical Possibilities of Sustainable Development of Wind and Photovoltaic Power Plants. Probl. Sustain. Dev. 2018, 13, 125–130. [Google Scholar]
- Dincer, I.; Midilli, A.; Kucuk, H. Progress in Sustainable Energy Technologies: Generating Renewable Energy; Springer: Cham, Switzerland, 2014; pp. 469–533. [Google Scholar] [CrossRef]
- Andersen, O. Unintended Consequences of Renewable Energy; Springer: London, UK, 2013; pp. 35–45. [Google Scholar] [CrossRef]
- Haapala, K.R.; Prempreeda, P. Comparative life cycle assessment of 2.0 MW wind turbines. Int. J. Sustain. Manuf. 2014, 3, 170. [Google Scholar] [CrossRef]
- Ozoemena, M.; Cheung, W.M.; Hasan, R. Comparative LCA of technology improvement opportunities for a 1.5-MW wind turbine in the context of an onshore wind farm. Clean Technol. Environ. Policy 2018, 20, 173–190. [Google Scholar] [CrossRef] [Green Version]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life cycle assessment of onshore and offshore wind energy-from theory to application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Mroziński, A.; Piasecka, I. Selected aspects of building, operation and environmental impact of offshore wind power electric plants. Pol. Marit. Res. 2015, 22, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Vestas Wind Systems A/S. Life Cycle Assessment of Offshore and Onshore Sited Wind Power Plants Based on Vestas V90–3.0 MW Turbines; Vestas Wind Systems A/S: Randers, Denmark, 2006. [Google Scholar]
- Piasecka, I.; Tomporowski, A.; Flizikowski, J.; Kruszelnicka, W.; Kasner, R.; Mroziński, A. Life Cycle Analysis of Ecological Impacts of an Offshore and a Land-Based Wind Power Plant. Appl. Sci. 2019, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Alsaleh, A.; Sattler, M. Comprehensive life cycle assessment of large wind turbines in the US. Clean Technol. Environ. Policy 2019, 21, 887–903. [Google Scholar] [CrossRef]
- Garrett, P.; Rendc, K. Life cycle assessment of wind power: Comprehensive results from a state-of-the-art approach. Int. J. Life Cycle Assess. 2013, 18, 37–48. [Google Scholar] [CrossRef]
- Abeliotis, K.; Pactiti, D. Assessment of the environmental impacts of a wind farm in central Greece during its life cycle. Int. J. Renew. Energy Res. 2014, 4, 580–585. [Google Scholar]
- Liu, P.; Barlow, C.Y. The environmental impact of wind turbine blades. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139, 012032. [Google Scholar] [CrossRef] [Green Version]
- Stavridou, N.; Koltsakis, E.; Baniotopoulos, C.C. A comparative life-cycle analysis of tall onshore steel wind-turbine towers. Clean Energy 2019, 4, 48–57. [Google Scholar] [CrossRef]
- Bałdowska-Witos, P.; Kruszelnicka, W.; Kasner, R.; Rudnicki, J.; Tomporowski, A.; Flizikowski, J. Impact of the plastic bottle production on the natural environment. Part 1. Application of the ReCiPe 2016 assessment method to identify environmental problems. Przem. Chem. 2019, 10, 1662–1667. [Google Scholar] [CrossRef]
- Kłos, Z. Ecobalancial assessment of chosen packaging processes in food industry. Int. J. Life Cycle Assess. 2002, 7, 309. [Google Scholar] [CrossRef]
- Guineé, J. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Springer: Berlin/Heidelberg, Germany, 2002; pp. 395–644. [Google Scholar] [CrossRef]
- Hauschild, M.; Rosenbaum, R.K.; Olsen, S. Life Cycle Assessment. Theory and Practice; Springer: Dordrecht, The Netherlands, 2018; pp. 9–55. [Google Scholar] [CrossRef]
- Piasecka, I.; Bałdowska-Witos, P.; Flizikowski, J.; Piotrowska, K.; Tomporowski, A. Control the System and Environment of Post-Production Wind Turbine Blade Waste Using Life Cycle Models. Part 1. Environmental Transformation Models. Polymers 2020, 12, 1828. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, S. Green Technologies and Environmental Sustainability; Springe: Cham, Switzerland, 2017; pp. 1–43. [Google Scholar] [CrossRef]
- Piotrowska, K.; Kruszelnicka, W.; Bałdowska-Witos, P.; Kasner, R.; Rudnicki, J.; Tomporowski, A.; Flizikowski, J.; Opielak, M. Assessment of the Environmental Impact of a Car Tire throughout Its Life Cycle Using the LCA Method. Materials 2019, 12, 4177. [Google Scholar] [CrossRef] [Green Version]
- Guinée, J.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Rydberg, T. Life Cycle Assessment: Past, present, and future. Environ. Sci. Technol. 2011, 1, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Bałdowska-Witos, P.; Kruszelnicka, W.; Kasner, R.; Tomporowski, A.; Flizikowski, J.; Mroziński, A. Impact of the plastic bottle production on the natural environment. Part 2. Analysis of data uncertainty in the assessment of the life cycle of plastic beverage bottles using the Monte Carlo technique. Przem. Chem. 2019, 10, 1668–1672. [Google Scholar]
- Mannheim, V.; Fehér, Z.; Siménfalvi, Z. Innovative solutions for the building industry to improve sustainability performance with Life Cycle Assessment modelling. In Solutions for Sustainable Development, 1st ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2019; pp. 245–253. [Google Scholar]
- Mannheim, V.; Siménfalvi, Z. Determining a Priority Order between Thermic Utilization Processes for Organic Industrial Waste with LCA; WIT Press: Southampton, UK, 2012; pp. 153–166. [Google Scholar]
- Werner, F. Ambiguities in Decision-Oriented Life Cycle Inventories; Springer: Dordrecht, The Netherlands, 2005; pp. 27–133. [Google Scholar] [CrossRef]
- Piasecka, I.; Bałdowska-Witos, P.; Piotrowska, K.; Tomporowski, A. Eco-energetical life cycle assessment of materials and components of photovoltaic power plant. Energies 2020, 13, 1385. [Google Scholar] [CrossRef] [Green Version]
- Finkbeiner, M. Special Types of Life Cycle Assessment; Springer: Dordrecht, The Netherlands, 2016; pp. 115–178. [Google Scholar] [CrossRef]
- Frankl, P.; Rubik, F. Life Cycle Assessment in Industry and Business; Springer: Berlin/Heidelberg, Germany, 2000; pp. 9–101. [Google Scholar] [CrossRef]
- Piotrowska, K.; Piasecka, I.; Bałdowska-Witos, P.; Kruszelnicka, W.; Tomporowski, A. LCA as a Tool for the Environmental Management of Car Tire Manufacturing. Appl. Sci. 2020, 10, 7015. [Google Scholar] [CrossRef]
- Tol, R. Environmental Crises; Springer: Berlin/Heidelberg, Germany, 2008; pp. 5–15. [Google Scholar] [CrossRef]
- Klinglmair, M.; Sala, S.; Brandão, M. Assessing resource depletion in LCA: A review of methods and methodological issues. Int. J. Life Cycle Assess. 2014, 19, 580–592. [Google Scholar] [CrossRef]
- Toke, D. Ecological Modernization and Renewable Energy; Palgrave Macmillan: New York, NY, USA, 2011; pp. 167–179. [Google Scholar] [CrossRef] [Green Version]
- Beauson, J.; Madsen, B.; Toncelli, C.; Brøndsted, P.; Bech, J.I. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites. Compos. Part. A Appl. Sci. Manuf. 2016, 11, 390–399. [Google Scholar] [CrossRef]
- Laws, E.A. Environmental Toxicology; Springer: New York, NY, USA, 2013; pp. 1–69. [Google Scholar] [CrossRef]
- Sasmal, J. Resources, Technology and Sustainability; Springer: Singapore, 2016; pp. 79–235. [Google Scholar] [CrossRef]
- Mushtaq, B.; Bandh, S.A.; Shafi, S. Environmental Management. Environmental Issues, Awareness and Abatement; Springer Nature: Singapore, 2020; pp. 1–93. [Google Scholar] [CrossRef]
- Bałdowska-Witos, P.; Kruszelnicka, W.; Kasner, R.; Tomporowski, A.; Flizikowski, J.; Kłos, Z.; Piotrowska, K.; Markowska, K. Application of LCA method for assessment of environmental impacts of a polylactide (PLA) bottle shaping. Polymers 2020, 12, 388. [Google Scholar] [CrossRef] [Green Version]
- Luch, A. Molecular, Clinical and Environmental Toxicology. Volume 3: Environmental Toxicology; Springer: Basel, Switzerland, 2012; pp. 21–131. [Google Scholar] [CrossRef]
- Berger, A.; Mesinger, F.; Sijacki, D. Climate Change; Springer: Wien, Austria, 2012; pp. 3–17. [Google Scholar] [CrossRef]
- Coulson, N.E.; Wang, Y.; Lipscomb, C.A. Energy Efficiency and the Future of Real Estate; Palgrave Macmillan: New York, NY, USA, 2017; pp. 9–35. [Google Scholar] [CrossRef]
- Demirel, Y. Energy: Production, Conversion, Storage, Conservation and Coupling; Springer: Cham, Switzerland, 2016; pp. 441–484. [Google Scholar] [CrossRef]
- Heshmati, A.; Abolhosseini, S.; Altmann, J. The Development of Renewable Energy Sources and Its Significance for the Environment; Springer: Singapore, 2015; pp. 7–29. [Google Scholar] [CrossRef]
- Vargas, A.V.; Zenon, E.; Oswald, U.; Islas, J.M.; Guereca, L.P.; Manzini, F.L. Life cycle assessment: A case study of two wind turbines used in Mexico. Appl. Therm. Eng. 2015, 75, 1210–1216. [Google Scholar] [CrossRef]
- Márquez, F.P.G.; Karyotakis, A.; Papaelias, M. Renewable Energies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–95. [Google Scholar] [CrossRef]
- McLellan, B. Sustainable Future for Human Security. Environment and Resources; Springer: Singapore, 2018; pp. 35–68. [Google Scholar] [CrossRef]
- Sobaszek, L.; Gola, A. Survival analysis method as a tool for predicting machine failures. Actual Probl. Econ. 2016, 3, 421–428. [Google Scholar]
- Bałdowska-Witos, P.; Piotrowska, K.; Kruszelnicka, W.; Błaszczak, M.; Tomporowski, A.; Opielak, M.; Kasner, R.; Flizikowski, J. Managing the uncertainty and accuracy of life cycle assessment results for the process of beverage bottle moulding. Polymers 2020, 12, 1320. [Google Scholar] [CrossRef]
Impact Category | Area of Influence | Ecolabel |
Carcinogens | Human health | |
Respiratory organics | ||
Respiratory inorganics | ||
Climate change | ||
Radiation | ||
Ozone layer | ||
Ecotoxicity | Ecosystem quality | |
Acidification/Eutrophication | ||
Land use | ||
Minerals | Resources | |
Fossil fuels |
Impact Categories | Tower | Turbine Structure | Rotor | Generator | Instrumentation |
---|---|---|---|---|---|
Carcinogens | 10.29 | 5.69 | 1.88 | 0.17 | 0.01 |
Respiratory organics | 0.27 | 0.15 | 0.05 | 0.02 | 0.00 |
Respiratory inorganics | 166.30 | 91.96 | 30.30 | 54.25 | 5.09 |
Climate change | 39.09 | 21.62 | 7.12 | 3.12 | 0.32 |
Radiation | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ozone layer | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ecotoxicity | 21.52 | 11.90 | 3.92 | 0.40 | 0.03 |
Acidification/Eutrophication | 21.28 | 11.77 | 3.88 | 3.71 | 0.35 |
Land use | 39.50 | 21.84 | 7.20 | 6.94 | 0.78 |
Minerals | 7.50 | 4.15 | 1.37 | 46.60 | 4.46 |
Fossil fuels | 125.13 | 69.20 | 22.80 | 20.42 | 2.13 |
Total | 430.89 | 238.28 | 78.52 | 135.62 | 13.17 |
Impact Categories | Recycled Tower | Recycled Turbine Structure | Recycled Rotor | Recycled Generator | Recycled Instrumentation |
---|---|---|---|---|---|
Carcinogens | −25.33 | −14.01 | −4.62 | −1.38 | −0.17 |
Respiratory organics | 0.15 | 0.08 | 0.03 | −0.01 | 0.00 |
Respiratory inorganics | 116.91 | 64.65 | 21.30 | 42.14 | 3.23 |
Climate change | −22.09 | −12.22 | −4.03 | −1.54 | −0.30 |
Radiation | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ozone layer | −0.03 | −0.02 | −0.01 | −0.01 | 0.00 |
Ecotoxicity | 23.44 | 12.96 | 4.27 | −0.21 | −0.06 |
Acidification/Eutrophication | 15.60 | 8.63 | 2.84 | 2.87 | 0.22 |
Land use | 39.50 | 21.84 | 7.20 | 6.94 | 0.78 |
Minerals | −2.44 | −1.35 | −0.44 | 43.55 | 4.01 |
Fossil fuels | 57.74 | 31.93 | 10.52 | 3.40 | −0.45 |
Total | 203.46 | 112.51 | 37.07 | 95.74 | 7.25 |
Impact Category | Tower | Recycled Tower | Turbine Structure | Recycled Turbine Structure | Rotor | Recycled Rotor | Generator | Recycled Generator | Instrumentation | Recycled Instrumentation |
---|---|---|---|---|---|---|---|---|---|---|
Carcinogens | 10.29 | −25.33 | 5.69 | −14.01 | 1.88 | −4.62 | 0.17 | −1.38 | 0.01 | −0.17 |
Respiratory organics | 0.27 | 0.15 | 0.15 | 0.08 | 0.05 | 0.03 | 0.02 | −0.01 | 0.00 | 0.00 |
Respiratory inorganics | 166.30 | 116.91 | 91.96 | 64.65 | 30.30 | 21.30 | 54.25 | 42.14 | 5.09 | 3.23 |
Climate change | 39.09 | −22.09 | 21.62 | −12.22 | 7.12 | −4.03 | 3.12 | −1.54 | 0.32 | −0.30 |
Radiation | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ozone layer | 0.00 | −0.03 | 0.00 | −0.02 | 0.00 | −0.01 | 0.00 | −0.01 | 0.00 | 0.00 |
Total | 215.95 | 69.61 | 119.42 | 38.48 | 39.35 | 12.67 | 57.56 | 39.2 | 5.42 | 2.76 |
Impact Category | Tower | Recycled Tower | Turbine Structure | Recycled Turbine Structure | Rotor | Recycled Rotor | Generator | Recycled Generator | Instrumentation | Recycled Instrumentation |
---|---|---|---|---|---|---|---|---|---|---|
Ecotoxicity | 21.52 | 23.44 | 11.90 | 12.96 | 3.92 | 4.27 | 0.40 | −0.21 | 0.03 | −0.06 |
Acidification/Eutrophication | 21.28 | 15.60 | 11.77 | 8.63 | 3.88 | 2.84 | 3.71 | 2.87 | 0.35 | 0.22 |
Land use | 39.50 | 39.50 | 21.84 | 21.84 | 7.20 | 7.20 | 6.94 | 6.94 | 0.78 | 0.78 |
Total | 82.3 | 78.54 | 45.51 | 43.43 | 15 | 14.31 | 11.05 | 9.6 | 1.16 | 0.94 |
Impact Category | Tower | Recycled Tower | Turbine Structure | Recycled Turbine Structure | Rotor | Recycled Rotor | Generator | Recycled Generator | Instrumentation | Recycled Instrumentation |
---|---|---|---|---|---|---|---|---|---|---|
Minerals | 7.50 | −2.44 | 4.15 | −1.35 | 1.37 | −0.44 | 46.60 | 43.55 | 4.46 | 4.01 |
Fossil fuels | 125.13 | 57.74 | 69.20 | 31.93 | 22.80 | 10.52 | 20.42 | 3.40 | 2.13 | −0.45 |
Total | 132.63 | 55.3 | 73.35 | 30.58 | 24.17 | 10.08 | 67.02 | 46.95 | 6.59 | 3.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bałdowska-Witos, P.; Doerffer, K.; Pysz, M.; Doerffer, P.; Tomporowski, A.; Opielak, M. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2. Materials 2021, 14, 204. https://doi.org/10.3390/ma14010204
Bałdowska-Witos P, Doerffer K, Pysz M, Doerffer P, Tomporowski A, Opielak M. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2. Materials. 2021; 14(1):204. https://doi.org/10.3390/ma14010204
Chicago/Turabian StyleBałdowska-Witos, Patrycja, Krzysztof Doerffer, Michał Pysz, Piotr Doerffer, Andrzej Tomporowski, and Marek Opielak. 2021. "Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2" Materials 14, no. 1: 204. https://doi.org/10.3390/ma14010204
APA StyleBałdowska-Witos, P., Doerffer, K., Pysz, M., Doerffer, P., Tomporowski, A., & Opielak, M. (2021). Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2. Materials, 14(1), 204. https://doi.org/10.3390/ma14010204