Dynamic Performance of Laminated High-Damping and High-Stiffness Composite Structure Composed of Metal Rubber and Silicone Rubber
Abstract
:1. Introduction
2. LCDS Preparation Based on MR and SR
2.1. Material Selection and Spiral Winding
2.2. Constant Pitch Stretching and Winding of the Blank
2.3. Stamping and Heat Treatment
2.4. Silicone Rubber Selection and Laminated Composite Structure
3. Experimental Procedure
3.1. Specimen Preparation
3.2. Dynamic Test Based on Sinusoidal Excitation
4. Results and Discussion
4.1. Effect of Laminated Structure on Damping Characteristics
4.1.1. Dynamic Damping Characteristics of Different Laminated Structures
4.1.2. LCDS Fatigue Characteristics
4.2. Single-Factor Control Experiments and Result Analysis
4.2.1. Effect of MR Matrix Density on Damping Performance
4.2.2. Effect of Amplitude on Damping Performance
4.2.3. Effect of Frequency on Damping Performance
4.2.4. Effect of Preloading on Damping Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Z.Q.; Chen, L.Q. Some advances in nonlinear passive vibration isolation. Acta Mech. Sin. 2017, 49, 550–564. [Google Scholar]
- Liu, H. Application of damping materials in surface ships. Ship Ocean Eng. 2016, 1, 74–78. [Google Scholar]
- Hokamoto, K.; Lee, J.S.; Fujita, M. The synthesis of bulk material through explosive compaction for making intermetallic compound Ti5Si3 and its composites. J. Mater. Sci. 2002, 37, 4073–4078. [Google Scholar] [CrossRef]
- Guo, J.H.; Zeng, X.R.; Luo, Q.K. Research progress of rubber damping materials. Spec. Rubber Products. 2012, 6, 72–77. [Google Scholar]
- Ren, J.W.; Song, J.Q.; Fu, H.D. Preparation and properties of boron nitride/silicone rubber ceramic composites. Rubber Ind. 2020, 67, 163–169. [Google Scholar]
- Lan, L.F. Vibration and Acoustic Radiation Analysis of Multi-Layer Damping Composite Structure. Ph.D. Thesis, Hunan University, Hunan, China, 2012. [Google Scholar]
- Li, H.; Li, B.; Sun, G.H. Effects of material and structural parameters on damping performance of constrained damping structures. J. N. China Univ. 2017, 38, 697–702. [Google Scholar] [CrossRef]
- Xiao, Y. Preparation and Characterization of Hyper-Elastic NiTi Alloy/Polyurethane Damping Composite. Ph.D. Thesis, Harbin Engineering University, Harbin, China, 2014. [Google Scholar]
- He, X. Study on Viscoelastic Damping Material and Its Multilayer Constrained Damping Structure. Ph.D. Thesis, Qingdao Technological University, Qingdao, China, 2015. [Google Scholar]
- Liang, S.; Zhang, S.G.; Liang, T.X. Panel structure design and dynamic characteristics analysis of composite materials with large damping and high specific stiffness. Vib. Impact. 2017, 6, 716–719. [Google Scholar]
- Yang, X.; Wang, Y.S.; Zhu, J.H.; Yu, H.W. Damping properties of multi-layer damped composite structure. J. Compos. Mater. 2005, 3, 175–181. [Google Scholar]
- Tanaka, T.; Nezu, M.; Uchida, S.; Hirata, T. Mechanism of intermetallic compound formation during the dissimilar friction stir welding of aluminum and steel. J. Mater. ENCE 2020, 55, 3064–3072. [Google Scholar] [CrossRef]
- Bai, H.B.; Lu, C.H.; Cao, F.L. Metal Rubber Materials and Engineering Application; Science Press: Beijing, China, 2014; ISBN 153-155160-162303-305. [Google Scholar]
- Li, T. Study on Compression Deformation Mechanism and High Temperature Mechanical Properties of Braided Grooved Metal Rubber; Army Engineering University: Shijiazhuang, China, 2019; pp. 62–65. [Google Scholar]
- Xiao, K.; Bai, H.B.; Xue, X. Damping Characteristics of Metal Rubber in the Pipeline Coating System. Shock Vib. 2018, 397, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ao, H.R.; Jiang, H.Y.; Wang, S.G. Study on vibration isolation performance of metal rubber damper supporting engine pipeline. Mech. Des. 2003, 20, 14–17. [Google Scholar]
- Lu, C.H.; Bai, H.B.; Hu, R.X. Dynamic model of metal rubber/rubber composite laminated dampers. J. Vib. Eng. 2008, 27, 493–497. [Google Scholar]
- Lu, C.Z.; Li, J.Y.; Zhou, B.Y. Effect of wire properties on fatigue properties of metal rubber. Vib. Shock 2018, 37, 154–159. [Google Scholar]
- Chen, Y.; Bai, H.B.; Lu, C.H. Application of metal rubber manufacturing and recommendation of product standardization. Mod. Manuf. Eng. 2014, 5, 131–135. [Google Scholar]
- Ren, Z.Y.; Shen, L.L.; Bai, H.B. Study on the Mechanical Properties of Metal Rubber with Complex Contact Friction of Spiral Coils based on Virtual Manufacturing Technology. Adv. Eng. Mater. 2020, 22, 324–342. [Google Scholar] [CrossRef]
- Liu, B.L.; Ma, Y.H.; Zhang, D.Y. Experiment investigation on the effect of heat treatment on metal rubber mechanical properties. J. Beijing Univ. Aeronaut. Astronaut. 2013, 39, 259–263. [Google Scholar]
- Wang, M.H.; Wang, Y.M.; Hu, X.T. Research progress of silicone rubber damping materials at home and abroad. Elastomer 2018, 28, 69–73. [Google Scholar]
- Yang, P.; Bai, H.B.; Xue, X. Vibration reliability characterization and damping capability of annular periodic metal rubber in the non-molding direction. Mech. Syst. Signal Process. 2019, 132, 622–639. [Google Scholar] [CrossRef]
- Liu, L.P.; Li, L.; Huang, Y.H. Study on high and low temperature tensile properties of phenyl silicone rubber. Silicone Mater. 2013, 27, 185–188. [Google Scholar]
- Yong, J.; Wang, Z.J.; Zhang, X.M. Experimental investigation on enhanced mechanical and damping performance of corrugated structure with metal rubber. Thin-Walled Struct. 2020, 154, 106816. [Google Scholar]
- Wu, R.P.; Bai, H.B.; Lu, C.H. Study on influencing factors and meso model of compression properties of metal rubber. Sci. Technol. Eng. 2018, 14, 47–58. [Google Scholar]
Element | Density/(g/cm3) | Weight/g | Forming Pressure/t |
---|---|---|---|
M(40) | 1.43 | 40 | 13 |
M(45) | 1.61 | 45 | 18 |
M(50) | 1.79 | 50 | 22 |
M(60) | 2.14 | 60 | 40 |
M(65) | 2.32 | 65 | 49 |
M(70) | 2.50 | 70 | 60 |
Material | Density (g/cm3) | Elastic Modulus (GPa) | Poisson’s Ratio | Applicable Temperature Range (°C) | Height (mm) |
---|---|---|---|---|---|
Silicon rubber | 1.4 | 1.2 | 0.48 | −30~200 | 4 |
304 (06Cr19Ni10) | 7.93 | 193 | 0.3 | −193~800 | - |
Wire Diameter (mm) | Coil Diameter (mm) | Helix Pitch (mm) | Winding Angle | Forming Size (mm) |
---|---|---|---|---|
0.2 | 1.4 | 1.2 | 45 | 175 × 40 |
Model of Testing Machine | Maximum Load Excitation (kN) | Maximum Loading Displacement (mm) | Loading Frequency Range (Hz) |
---|---|---|---|
SDS-200 | 200 | ±50 | 0.01–50 |
Laminated Structure | |||
---|---|---|---|
S-M(80)-S | 0.179 | 29.640 | 4.160 |
M(80)-S-M(80) | 0.170 | 23.686 | 3.196 |
S-S-S | 0.203 | 17.465 | 2.822 |
M(80)-M(80)-M(80) | 0.164 | 18.393 | 2.373 |
M(70)-M(70)-M(70) | 0.190 | 7.751 | 1.149 |
M(60)-M(60)-M(60) | 0.220 | 5.340 | 0.889 |
Group | Laminated Structure | Density of MR Matrix/(g/cm3) | Amplitude /mm | Frequency/Hz | Preload /mm |
---|---|---|---|---|---|
1 | S-M-S | 1.43/1.61/1.79/2.32/3.04 | 0.5 | 1.0 | 2.0 |
2 | S-M-S | 2.86 | 0.2/0.5/0.8/1.0 | 1.0 | 2.0 |
3 | S-M-S | 2.86 | 0.2 | 1.0/3.0/5.0/7.0/9.0 | 2.0 |
4 | S-M-S | 1.79 | 0.5 | 1.0 | 1.5/2.0/2.5/3.0/3.5 |
Laminated Structure | Density/(g/cm3) | |||
---|---|---|---|---|
S-M(40)-S | 1.43 | 0.183 | 15.614 | 2.261 |
S-M(45)-S | 1.61 | 0.184 | 16.392 | 2.380 |
S-M(50)-S | 1.79 | 0.190 | 19.456 | 2.901 |
S-M(65)-S | 2.32 | 0.175 | 24.837 | 3.447 |
S-M(85)-S | 3.04 | 0.164 | 39.345 | 5.111 |
Laminated Structure | Amplitude/mm | |||
---|---|---|---|---|
S-M(80)-S | 0.2 | 0.199 | 37.579 | 0.960 |
0.5 | 0.179 | 29.640 | 4.160 | |
0.8 | 0.164 | 27.230 | 8.935 | |
1.0 | 0.171 | 24.898 | 13.353 |
Laminated Structure | Frequency /Hz | Loss Factor η | Energy Consumption ΔW | |
---|---|---|---|---|
S-M(80)-S | 1.0 | 0.199 | 37.579 | 0.960 |
3.0 | 0.196 | 38.264 | 0.903 | |
5.0 | 0.196 | 38.844 | 0.911 | |
7.0 | 0.198 | 38.880 | 0.918 | |
9.0 | 0.204 | 38.849 | 0.974 |
Laminated Structure | Preload/mm | η | ||
---|---|---|---|---|
S-M(50)-S | 1.5 | 0.178 | 5.297 | 0.745 |
2.0 | 0.196 | 10.892 | 1.690 | |
2.5 | 0.215 | 15.785 | 2.638 | |
3.0 | 0.203 | 24.686 | 3.962 | |
3.5 | 0.195 | 31.361 | 4.833 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Ren, Z.; Shen, L.; Zhang, B.; Bai, H. Dynamic Performance of Laminated High-Damping and High-Stiffness Composite Structure Composed of Metal Rubber and Silicone Rubber. Materials 2021, 14, 187. https://doi.org/10.3390/ma14010187
Zheng X, Ren Z, Shen L, Zhang B, Bai H. Dynamic Performance of Laminated High-Damping and High-Stiffness Composite Structure Composed of Metal Rubber and Silicone Rubber. Materials. 2021; 14(1):187. https://doi.org/10.3390/ma14010187
Chicago/Turabian StyleZheng, Xiaoyuan, Zhiying Ren, Liangliang Shen, Bin Zhang, and Hongbai Bai. 2021. "Dynamic Performance of Laminated High-Damping and High-Stiffness Composite Structure Composed of Metal Rubber and Silicone Rubber" Materials 14, no. 1: 187. https://doi.org/10.3390/ma14010187
APA StyleZheng, X., Ren, Z., Shen, L., Zhang, B., & Bai, H. (2021). Dynamic Performance of Laminated High-Damping and High-Stiffness Composite Structure Composed of Metal Rubber and Silicone Rubber. Materials, 14(1), 187. https://doi.org/10.3390/ma14010187