Analysis of Antichiral Thermomechanical Metamaterials with Continuous Negative Thermal Expansion Properties
Abstract
1. Introduction and Material System Definition
2. Theoretical Analysis
2.1. Thermal Strain Function
2.2. Thermal Expansivity Function
2.3. Thermal Hyperexpansivity
2.4. Initial Thermal Expansivity and Hyperexpansivity
2.5. Maximal Rotation Angle -and Maximal Temperature
3. Experimental Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp. 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Technol. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530. [Google Scholar] [CrossRef]
- Zhou, J.; Koschny, T.; Kafesaki, M.; Economou, E.N.; Pendry, J.B.; Soukoulis, C.M. Saturation of magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 2005, 95, 223902. [Google Scholar] [CrossRef]
- Miyamaru, F.; Saito, Y.; Takeda, M.W.; Hou, B.; Liu, L.; Wen, W.; Sheng, P. Terahertz electric response of fractal metamaterial structures. Phys. Rev. Lett. B 2008, 77, 045124. [Google Scholar] [CrossRef]
- Guariglia, E. Entropy and Fractal Antennas. Entropy 2016, 18, 84. [Google Scholar] [CrossRef]
- Walser, R.M. Electromagnetic Metamaterials. In Proceedings of the SPIE 4467, Complex. Mediums II: Beyond Linear Isotropic Dielectrics, San Diego, CA, USA, 9 July 2001. [Google Scholar]
- Cummer, S.A.; Christensen, J.; Alu, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef]
- Hussein, M.I.; Leamy, M.J.; Ruzzene, M. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl. Mech. Rev. 2014, 66, 040802. [Google Scholar] [CrossRef]
- Lui, Z.; Zhang, X.; Mao, Y.; Zhu, Y.; Yang, Z.; Chan, C.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar]
- Wang, Y.Z.; Li, F.M.; Huang, W.-H.; Jiang, X.; Wang, Y.-S.; Kishimoto, K. Wave band gaps in two—Dimensional piezoelectric/piezomagnetic phononic crystals. Int. J. Solids Struct. 2008, 45, 4203–4210. [Google Scholar] [CrossRef]
- Yu, X.L.; Zhou, J.; Liang, H.Y.; Jiang, Z.Y.; Wu, L.L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Bertoldi, K.; Vitelli, V.; Christensen, J.; van Hecke, M. Flexible Mechanical Metamaterials. Nat. Rev. Mater. 2017, 2, 17066. [Google Scholar] [CrossRef]
- Kolpakov, A.G. On the determination of the averaged moduli of elastic gridworks. Prikl. Mater. Mekh. 1985, 59, 969–977. [Google Scholar]
- Lakes, R.S. Foam structures with a negative Poisson’s ratio. Science 1987, 235, 1038–1040. [Google Scholar] [CrossRef]
- Lakes, R.S. Negative Poisson’s ratio materials. Science 1987, 238, 551. [Google Scholar] [CrossRef]
- Kaminakis, N.T.; Stavroulakis, G.E. Topology optimization for compliant mechanisms, using evolutionary- hybrid algorithms and application to the design of auxetic material. Compos. Part B Eng. 2012, 43, 2655–2668. [Google Scholar] [CrossRef]
- Stavroulakis, G.E. Auxetic behaviour: Appearance and engineering applications. Phys. Status Solidi B 2005, 242, 710–720. [Google Scholar] [CrossRef]
- Dong, L.; Lakes, R. Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. Int. J. Solids Struct. 2013, 50, 2416–2423. [Google Scholar] [CrossRef]
- Tan, X.; Chen, S.; Wang, B.; Zhu, S.; Wu, L.; Sun, Y. Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy. Extreme Mech. Lett. 2019, 28, 8–21. [Google Scholar] [CrossRef]
- Dudek, K.K.; Gatt, R.; Grima, J.N. 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behavior. Mater. Des. 2020, 187, 108403. [Google Scholar] [CrossRef]
- Nicolau, Z.G.; Motter, A.E. Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 2012, 11, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, Z.G.; Motter, A.E. Longitudinal inverted compressibility in super-strained metamaterials. J. Stat. Phys. 2013, 151, 1162–1174. [Google Scholar] [CrossRef]
- Chen, M.L.; Karpov, E.G. Bistability and thermal coupling in elastic metamaterials with negative compressibility. Phys. Rev. E 2014, 90, 033201. [Google Scholar] [CrossRef]
- Imre, A.R. Metamaterials with negative compressibility – a novel concept with a long history. Mater. Sci.-Pol. 2014, 32, 126–129. [Google Scholar] [CrossRef]
- Karpov, E.G.; Danso, L.A.; Klein, J.T. Negative Extensibility Metamaterials: Occurrence and Design Space Topology. Phys. Rev. E 2017, 96, 023002. [Google Scholar] [CrossRef]
- Klein, J.T.; Karpov, E.G. Negative extensibility metamaterials: Phase diagram calculation. Comput. Mech. 2018, 62, 669–683. [Google Scholar] [CrossRef]
- Karpov, E.G. Structural Metamaterials with Saint-Venant’s Edge Effect Reversal. Acta Mater. 2017, 123, 245–254. [Google Scholar] [CrossRef]
- Karpov, E.G.; Danso, L.A.; Klein, J.T. Anomalous strain energy transformation pathways in mechanical metamaterials. Proc. R. Soc. A 2019, 475, 20190041. [Google Scholar] [CrossRef] [PubMed]
- Danso, L.A.; Karpov, E.G. Reprogramming Static Deformation Patterns in Mechanical Metamaterials. Materials 2018, 11, 2050. [Google Scholar] [CrossRef] [PubMed]
- Karpov, E.G.; Danso, L.A. Strain Energy Spectral Density and Information Content of Materials Deformation. Int. J. Mech. Sci. 2018, 148, 676–683. [Google Scholar] [CrossRef]
- Coulais, C.; Sounas, D.; Alu, A. Static non-reciprocity in mechanical metamaterials. Nature 2017, 542, 461–464. [Google Scholar] [CrossRef]
- Takenaka, K. Negative thermal expansion materials: Technological key for control of thermal expansion. Sci. Technol. Adv. Mater. 2012, 13, 013001. [Google Scholar] [CrossRef]
- Shen, X.; Viney, C.; Johnson, E.R.; Wang, C.; Lu, J.Q. Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nat. Chem. 2013, 5, 1035–1041. [Google Scholar] [CrossRef]
- Wu, L.; Li, B.; Zhou, J. Isotropic Negative Thermal Expansion Metamaterials. ACS Appl. Mater. Interfaces 2016, 8, 17721–17727. [Google Scholar] [CrossRef]
- Klein, J.T.; Karpov, E.G. Bistability in thermomechanical metamaterials structured as three-dimensional composite tetrahedra. Extreme Mech. Lett. 2019, 29, 100459. [Google Scholar] [CrossRef]
- Wu, W.; Hua, W.; Qian, G.; Liao, H.; Xud, X.; Berto, F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater. Des. 2019, 180, 107950. [Google Scholar] [CrossRef]
- Gatt, R.; Grima, J.N. Negative compressibility. Phys. Status Solidi RRL 2008, 2, 236–238. [Google Scholar] [CrossRef]
- Timoshenko, J. Analysis of Bi-Metal Thermostats. J. Opt. Soc. Am. 1925, 11, 233–255. [Google Scholar] [CrossRef]
Chirality Angle (rad) | Node Size Ratio | Thermal Bending Coefficient (rad/°C) |
---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Glanville, P.; Karpov, E.G. Analysis of Antichiral Thermomechanical Metamaterials with Continuous Negative Thermal Expansion Properties. Materials 2020, 13, 2139. https://doi.org/10.3390/ma13092139
Saha D, Glanville P, Karpov EG. Analysis of Antichiral Thermomechanical Metamaterials with Continuous Negative Thermal Expansion Properties. Materials. 2020; 13(9):2139. https://doi.org/10.3390/ma13092139
Chicago/Turabian StyleSaha, Debajyoti, Paul Glanville, and Eduard G. Karpov. 2020. "Analysis of Antichiral Thermomechanical Metamaterials with Continuous Negative Thermal Expansion Properties" Materials 13, no. 9: 2139. https://doi.org/10.3390/ma13092139
APA StyleSaha, D., Glanville, P., & Karpov, E. G. (2020). Analysis of Antichiral Thermomechanical Metamaterials with Continuous Negative Thermal Expansion Properties. Materials, 13(9), 2139. https://doi.org/10.3390/ma13092139