Progressive Applications of Hyperbranched Polymer Based on Diarylamine: Antimicrobial, Anti-Biofilm and Anti-Aerobic Corrosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hyperbranched Phenylenediamine/Methyl Acrylate HB(PDMA)
2.3. Characterization of the Prepared Hyperbranched Polymers
2.4. Antimicrobial Activity Test of the Synthesized HB(PDMA)s
2.4.1. Microbial Strain Standards
2.4.2. Microbial Media and Cultivation Conditions
2.4.3. Minimum Inhibitory Concentrations (MIC)s and Minimum Bactericidal/Fungicidal Concentrations (MBC/MFC)s of the Synthesized HB(PDMA)s
2.5. Anti-Biofilms (Bacterial Adhesion) Activity of the Synthesized HB(PDMA)s and Minimum Biofilm Inhibitory Concentrations (MBICs) Detection
2.6. Antimicrobial Activity Test of the Synthesized HB(PDMA)s against Isolated Slime Forming Bacteria (SFB) Cultivated at High Salinity (35,000 ppm NaCl) and MIC/MBC Detection
2.7. Anti-Corrosion Activity of the Synthesized HB(PDMA)s
3. Results
3.1. Synthesis and Characterization
3.2. Applications of the Synthesized HB(PDMA)s
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghosh, A.; Banerjee, S.; Voit, B. Aromatic hyperbranched polymers: Synthesis and application. Adv. Polym. Sci. 2015, 266, 27–124. [Google Scholar]
- Wang, D.; Jin, Y.; Zhu, X.; Yan, D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog. Polym. Sci. 2017, 64, 114–153. [Google Scholar] [CrossRef]
- Goseki, R.; Tanaka, S.; Ishizone, T.; Hirao, A. Living anionic polymerization of 1,4-divinylbenzene and its derivatives. React. Funct. Polym. 2018, 127, 94–112. [Google Scholar] [CrossRef]
- Caminade, A.-M.; Ouali, A.; Laurent, R.; Majoral, J.-P. Effects of Nanoconfinement on Catalysis; Springer International Publishing: Basel, Switzerland, 2017; pp. 173–207. [Google Scholar]
- Bi, Y.; Tan, Z.; Wang, L.; Li, W.; Liu, C.; Wang, Z.; Liu, X.; Jia, X. The demulsification properties of cationic hyperbranched polyamidoamines for polymer flooding emulsions and microemulsions. Processes 2020, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yao, Q.; Liu, B.; Shan, N.; Chen, H. Synthesis and characterization of scale and corrosion inhibitors with hyper-branched structure and the mechanism. New J. Chem. 2017, 41, 12205–12217. [Google Scholar] [CrossRef]
- Carpenter, K.M. Hyberbranched polymers as biocompatible oil dispersants: Influence of salinity, ph, and concentration on dispersion effectiveness. Master’s Thesis, Clemson University, Clemson, SC, USA, August 2016. [Google Scholar]
- Kabel, K.; Abdelghaffar, A.M.; Farag, R.; Maysour, N.; Zahran, M. Synthesis and evaluation of PAMAM dendrimer and PDPF-b-POP block copolymer as asphaltene inhibitor/dispersant. Res. Chem. Intermed. 2014, 41, 457–474. [Google Scholar] [CrossRef]
- Arkas, M.; Eleades, L.; Paleos, C.M.; Tsiourvas, D. Alkylated hyperbranched polymers as molecular nanosponges for the purification of water from polycyclic aromatic hydrocarbons. J. Appl. Polym. Sci. 2005, 97, 2299–2305. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Siddiqui, M.T.; Haq, Q.M.R.; Ahmad, S. Synthesis and characterization of surface-active antimicrobial hyperbranched polyurethane coatings based on oleo-ethers of boric acid. Arab. J. Chem. 2020, 13, 2689–2701. [Google Scholar] [CrossRef]
- Kanai, T.; Thirumoolan, D.; Mohanram, R.; Vetrivel, K.; Basha, K.A. Antimicrobial activity of hyperbranched polymers: Synthesis, characterization, and activity assay study. J. Bioact. Compat. Polym. 2015, 30, 145–156. [Google Scholar] [CrossRef]
- Ruiz, J.A.R.; López, M.T.; García, F.C.; Garcia, J. Functional aromatic polyamides. Polymers 2017, 9, 414. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Loos, K. Enzymatic Synthesis of biobased polyesters and polyamides. Polymers 2016, 8, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flory, P.J. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A—R—Bf-1type units. J. Am. Chem. Soc. 1952, 74, 2718–2723. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Odian, G.; Tomalia, N.A. Thermal polymerization of a 2-(carboxyalkyl)-2-oxazoline. Macromolecules 1988, 21, 1556–1562. [Google Scholar] [CrossRef]
- Jikei, M.; Fujii, K.; Yang, G.; Kakimoto, M.-A. Synthesis and properties of hyperbranched aromatic polyamide copolymers from AB and AB2monomers by direct polycondensation. Macromolecules 2000, 33, 6228–6234. [Google Scholar] [CrossRef]
- Kakimoto, M.-A.; Grunzinger, S.J.; Hayakawa, T. Hyperbranched poly(ether sulfone)s: Preparation and application to ion-exchange membranes. Polym. J. 2010, 42, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Liou, G.-S.; Lin, H.-Y.; Yen, H.-J. Synthesis and characterization of electroactive hyperbranched aromatic polyamides based on A2B-type triphenylamine moieties. J. Mater. Chem. 2009, 19, 7666. [Google Scholar] [CrossRef]
- Park, Y.; Jung, J.; Chang, M. Research progress on conducting polymer-based biomedical applications. Appl. Sci. 2019, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhou, C.; Zhang, J. Investigation of corrosion resistance of poly(o-phenylenediamine)-ZnO composites on stainless steel. Int. J. Electrochem. Sci. 2019, 14, 8173–8184. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Li, Y.; Ding, Y.-S.; Pan, K.-F.; Zhao, Q. Coatings corrosion resistance of poly(o-phenylenediamine) on mild steel in 3.5% NaCl: Influence of inorganic acid. JOM 2019, 1–8. [Google Scholar] [CrossRef]
- Labena, A.; Hegazy, M.; Horn, H.; Müller, E. The biocidal effect of a novel synthesized gemini surfactant on environmental sulfidogenic bacteria: Planktonic cells and biofilms. Mater. Sci. Eng. C 2015, 47, 367–375. [Google Scholar] [CrossRef]
- Deans, S.; Ritchie, G. Antibacterial properties of plant essential oils. Int. J. Food Microbiol. 1987, 5, 165–180. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, M.; Wang, K.; Mao, L.; Xu, D.; Zeng, G.; Liang, S.-D.; Deng, F.; Zhang, X.; Wei, Y. Fabrication and biological applications of luminescent polyamidoamine dendrimers with aggregation-induced emission feature. J. Taiwan Inst. Chem. Eng. 2017, 75, 292–298. [Google Scholar] [CrossRef]
- Mims, C.A.; Playfair, J.H.L.; Roitt, I.M.; Wakelin, D.; Williams, R. Medical Microbiology Review; Mosby Europe: London, UK, 1993; pp. 1–34. [Google Scholar]
- Amsterdam, D. Antibiotics in laboratory medicine, 4th ed.; Williams & Wilkins: Baltimore, MD, USA, 1996; pp. 52–111. [Google Scholar]
- Labena, A.; Kabel, K.; Farag, R. One-pot synthesize of dendritic hyperbranched PAMAM and assessment as a broad spectrum antimicrobial agent and anti-biofilm. Mater. Sci. Eng. C 2016, 58, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Approved standard M7-A6– Clinical Laboratory Standards Institute (CLSI). Reference Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2003. [Google Scholar]
- Approved Standard M27-A2– Clinical Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002. [Google Scholar]
- Kumar, K.; Giribhattanavar, P.; Sagar, C.; Patil, S. A rapid and simple resazurin assay to detect minimum inhibitory concentrations of first-line drugs for mycobacterium tuberculosis isolated from cerebrospinal fluid. J. Glob. Antimicrob. Resist. 2018, 12, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Djais, A.I.; Tahir, H.; Hatta, M.; Achmad, H.; Wahyuni, A. Differences of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of moringa leaf extract (Moringa oliefera L.) on bacteria aggregatibacter actinomycetemcomitans and porphyromonas gingivalis. Ind. J. Pub. Heal. Res. & Devel. 2019, 10, 896–900. [Google Scholar]
- Labena, A.; Hegazy, M.A.; Sami, R.; Hozzein, W.N. Multiple applications of a novel cationic gemini surfactant: Anti-microbial, anti-biofilm, biocide, salinity corrosion inhibitor, and biofilm dispersion (Part II). Molecules 2020, 25, 1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labena, A.; Hegazy, M.; Horn, H.; Müller, E. Cationic gemini surfactant as a corrosion inhibitor and a biocide for high salinity sulfidogenic bacteria originating from an oil-field water tank. J. Surfactants Deterg. 2013, 17, 419–431. [Google Scholar] [CrossRef]
- Li, Y.-T.; Zhang, Q.-P.; Xiao, F.; Zhou, Y. Graphene oxide promoted synthesis of p-phenylenediamine antioxidants. Russ. J. Gen. Chem. 2016, 86, 356–359. [Google Scholar] [CrossRef]
- Voit, B.I.; Lederer, A. Hyperbranched and highly branched polymer architectures—Synthetic strategies and Major characterization aspects. Chem. Rev. 2009, 109, 5924–5973. [Google Scholar] [CrossRef]
- Wang, X.; Guerrand, L.; Wu, B.; Li, X.; Boldon, L.; Chen, W.-R.; Liu, L. Characterizations of polyamidoamine dendrimers with scattering techniques. Polymers 2012, 4, 600–616. [Google Scholar] [CrossRef]
- Jeon, I.-Y.; Noh, H.-J.; Baek, J.-B. Hyperbranched macromolecules: From synthesis to applications. Molecules 2018, 23, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Zhang, D.; Bai, L.; Zhao, J.; Wu, Y.; Zhao, H.; Ba, X. The synthesis of backbone thermo and ph responsive hyperbranched poly(bis(n,n-propyl acryl amide))s by RAFT. Polymers 2016, 8, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, B.; Zhang, Y.; Zheng, Y.; Wen, X.; Bai, L.; Wu, Y. Hyperbranched glycopolymers of 2-(α-d-mannopyranose) ethyl methacrylate and n,n’-methylenebisacrylamide: Synthesis, characterization and multivalent recognitions with concanavalin a. Polymers 2018, 10, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kambouris, P.; Hawker, C.J. A versatile new method for structure determination in hyperbranched macromolecules. J. Chem. Soc. Perkin Trans. 1 1993, 22, 2717. [Google Scholar] [CrossRef]
- Bolton, D.H.; Wooley, K.L. Hyperbranched aryl polycarbonates derived from A2B monomers versus AB2 monomers. J. Polym. Sci., Part A Polym. Chem. 2002, 40, 823–835. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: Advances from synthesis to applications. Chem. Soc. Rev. 2015, 44, 4091–4130. [Google Scholar] [CrossRef]
- Xia, J.; Wang, W.; Hai, X.; Shuang, E.; Shu, Y.; Wang, J. Improvement of antibacterial activity of copper nanoclusters for selective inhibition on the growth of gram-positive bacteria. Chin. Chem. Lett. 2019, 30, 421–424. [Google Scholar] [CrossRef]
- Yusof, N.A.A.; Zain, N.M.; Pauzi, N. Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Boil. Macromol. 2019, 124, 1132–1136. [Google Scholar] [CrossRef]
- Vasileva-Tonkova, E.; Staneva, D.; Medel, S.; Bosch, P.; Grozdanov, P.; Nikolova, I.; Grabchev, I. Antimicrobial, antibiofilm and cytotoxicity activity of a new acridine hyperbranched polymer in solution and on cotton fabric. Fibers Polym. 2019, 20, 19–24. [Google Scholar] [CrossRef]
- Zhu, Y.; Ke, J.; Zhang, L. Racing for the Surface; Springer International Publishing: Basel, Switzerland, 2020; pp. 333–354. [Google Scholar]
- Rasines, B.; Hernández-Ros, J.M.; Cuevas, N.D.L.; Copa-Patiño, J.L.; Soliveri, J.; Muñoz-Fernández, M. Ángeles; Gómez, R.; De La Mata, F.J. Water-stable ammonium-terminated carbosilane dendrimers as efficient antibacterial agents. Dalton Trans. 2009, 40, 8704. [Google Scholar] [CrossRef]
- Santos, M.R.E.; Fonseca, A.C.; Mendonça, P.; Branco, R.; Serra, A.C.; Morais, P.V.; Coelho, J.F.J. Recent developments in antimicrobial polymers: A review. Materials 2016, 9, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, D.M.; Sallam, M.A.; Youssef, T.N. Synthesis of compounds having antimicrobial activity from alginate. Bioorg. Chem. 2019, 87, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Ahmad, A.; Ullah, M.F. Synthesis, spectroscopic investigations, antimicrobial and DNA binding studies of a new charge transfer complex of o-p-phenylenediamine with 3,5-dinitrosalicylic acid. Spectrochim Acta Part A Molec. & Biomol Spectro. 2013, 102, 82–87. [Google Scholar]
- Karami, P.; Khaledi, A.; Mashoof, R.Y.; Yaghoobi, M.H.; Karami, M.; Dastan, D.; Alikhani, M.Y. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Rep. 2020, 18, 100561. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Zhang, R.; Guan, F.; Hou, B.; Duan, J. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: A brief view. Appl. Microbiol. Biotechnol. 2019, 104, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, E.; Zhao, Y.; Li, H.; Liu, Z.; Zhang, D.; Yang, C.; Lin, H.; Li, X.; Yang, K. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. J. Mater. Sci. Technol. 2018, 34, 1325–1336. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, E.; Xu, D.; Yang, Y.; Zhao, Y.; Zhang, T.; Gu, T.; Yang, K.; Wang, F. Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise. Corros. Sci. 2018, 143, 281–291. [Google Scholar] [CrossRef]
- Jia, R.; Yang, D.; Xu, J.; Xu, D.; Gu, T. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros. Sci. 2017, 127, 1–9. [Google Scholar] [CrossRef]
- Abdolahi, A.; Hamzah, E.; Ibrahim, Z.; Hashim, S. Localised corrosion of mild steel in presence of Pseudomonas aeruginosa biofilm. Corros. Eng. Sci. Technol. 2015, 50, 538–546. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Wang, Y.; Li, Q.; Yan, B. Semi-empirical prediction model of chloride-induced corrosion rate in uncracked reinforced concrete exposed to a marine environment. Electrochim. Acta 2020, 331, 135376. [Google Scholar] [CrossRef]
- Ismail, K.; Jayaraman, A.; Wood, T.K.; Earthman, J.C. The influence of bacteria on the passive film stability of 304 stainless steel. Electrochimica Acta 1999, 44, 4685–4692. [Google Scholar] [CrossRef]
- Labena, A.; Hegazy, M.; Horn, H.; Müller, E. Sulfidogenic-corrosion inhibitory effect of cationic monomeric and gemini surfactants: Planktonic and sessile diversity. RSC Adv. 2016, 6, 42263–42278. [Google Scholar] [CrossRef]
- Morsi, R.E.; Labena, A.; Khamis, E.A. Core/shell (ZnO/polyacrylamide) nanocomposite: In-situ emulsion polymerization, corrosion inhibition, anti-microbial and anti-biofilm characteristics. J. Taiwan Inst. Chem. Eng. 2016, 63, 512–522. [Google Scholar] [CrossRef]
- Widyanto, B.; Chaerun, S.K.; Hartomo, W.A.; Rizki, I.N. Biocorrosion behavior of AISI 1006 carbon steel protected by biofilm of Bacillus subtilis by an iron-oxidizing bacterium and a sulfate-reducing bacterium. J. Bio- Tribo-Corrosion 2019, 6, 6. [Google Scholar] [CrossRef]
- Kabel, K.I.; Kamel, L.A.; Abou-shahaba, R.M.; El-Shenawy, A.E.; Shahen, S. Some water-soluble polymers as corrosion inhibitors for carbon steel in acidic medium. Al Azhar Bull Sci. 2017, 28, 1–10. [Google Scholar]
- Salam, M.A.; Al-Juaid, S.; Qusti, A.; Hermas, A. Electrochemical deposition of a carbon nanotube-poly(o-phenylenediamine) composite on a stainless steel surface. Synth. Met. 2011, 161, 153–157. [Google Scholar] [CrossRef]
1H, ppm | Integration, m | Assignment | Functional Groups |
---|---|---|---|
8.106 | 11.46 | D1 | –NH aromatic |
8.101 | 11.46 | T1 | |
8.08 | 11.46 | L1 | |
7.30 | 12.69 | D2 | H aromatic |
7.27 | 11.44 | D3 | |
6.42 | 41.56 | T2 | |
6.36 | 10.42 | L2 | |
6.34 | 8.43 | L3 | |
6.33 | 12.44 | T3 | |
3.56 | 40.24 | T4 | –NH2 aromatic |
3.59 | 24.22 | D4 | –N–CH2 |
3.58 | 51.15 Wiesbaden | L4 |
Compounds | Staphylococcus aureus (ATCC 29737) | Bacillus subtilis (ATCC 6633) | Escherichia coli (ATCC 8739) | Candida albicans (ATCC 10231) |
---|---|---|---|---|
Mean Inhibition Zone (mm)* | ||||
HB(PDMA)G2 | 20.0 ± 0.8 | 17.3 ± 0.2 | 15.3± 0.4 | 14.1 ± 0.2 |
HB(PDMA)G3 | 27.0 ± 0.4 | 28.0 ± 0.4 | 24.8 ± 0.6 | 20.6 ± 1.2 |
HB(PDMA)G4 | 28.0 ± 0.8 | 30.0 ± 0.0 | 25.0 ± 0.0 | 27.0 ± 0.0 |
**AMC | 20.0 ± 0.0 | 17.0 ± 0.0 | - | - |
TE | - | - | 22.0 ± 0.0 | - |
Flu | - | - | - | 17.0 ± 0.2 |
Compounds | Staphylococcus aureus (ATCC 29737) | Bacillus subtilis (ATCC 6633) | Escherichia coli (ATCC 8739) | Candida albicans (ATCC 10231) | ||||
---|---|---|---|---|---|---|---|---|
MIC *(mM) | MBC (mM) | MIC (mM) | MBC (mM) | MIC (mM) | MBC (mM) | MIC (mM) | MFC (mM) | |
HB(PDMA)G2 | 0.625 | 1.25 | 0.625 | 1.25 | 1.25 | 2.5 | 2.5 | 2.5 |
HB(PDMA)G3 | 0.078 | 0.156 | 0.156 | 0.625 | 0.625 | 1.25 | 0.625 | 0.625 |
HB(PDMA)G4 | 0.039 | 0.039 | 0.078 | 0.156 | 0.312 | 0.625 | 0.312 | 0.312 |
Compounds | Bacillus subtilis (ATCC6633) | Escherichia coli (ATCC 8739) |
---|---|---|
MBIC (mM) | MBIC (mM) | |
HB(PDMA)G2 | 5.0 | 5.0 |
HB(PDMA)G3 | 0.625 | 1.25 |
HB(PDMA)G4 | 0.312 | 0.625 |
Compounds | Pseudomonas sp. (R301) |
---|---|
Mean Inhibition Zone (mm) | |
HB(PDMA)G2 | 20.6 ± 0.4 |
HB(PDMA)G3 | 40.0 ± 0.0 |
HB(PDMA)G4 | 44.0 ± 0.8 |
Benzalkonium chloride (50 ppm) | 32.0 ± 0.0 |
Compounds | Pseudomonas sp. (R301) | |
---|---|---|
MIC (mM) | MBC (mM) | |
HB(PDMA)G2 | 1.25 | 2.5 |
HB(PDMA)G3 | 0.312 | 0.625 |
HB(PDMA)G4 | 0.312 | 0.625 |
Samples | Concentration (mM) | Mean Corrosion Rate (g m−2 d−1) | Inhibition Efficiency (%) |
---|---|---|---|
Blank | - | 1.95 ± 0.03 | 0 |
Control | - | 1.5 ± 0.10 | 22.8 |
HB(PDMA)G2 | 2.5 | 0.92 ± 0.05 | 52.8 |
HB(PDMA)G2 | 5.0 | 0.36 ± 0.01 | 81.5 |
HB(PDMA)G3 | 0.625 | 0.83 ± 0.05 | 57.4 |
HB(PDMA)G3 | 1.25 | 0.14 ± 0.005 | 92.8 |
HB(PDMA)G4 | 0.312 | 0.79 ± 0.02 | 59.5 |
HB(PDMA)G4 | 0.625 | 0.11 ± 0.02 | 94.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabel, K.I.; Labena, A.; Keshawy, M.; Hozzein, W.N. Progressive Applications of Hyperbranched Polymer Based on Diarylamine: Antimicrobial, Anti-Biofilm and Anti-Aerobic Corrosion. Materials 2020, 13, 2076. https://doi.org/10.3390/ma13092076
Kabel KI, Labena A, Keshawy M, Hozzein WN. Progressive Applications of Hyperbranched Polymer Based on Diarylamine: Antimicrobial, Anti-Biofilm and Anti-Aerobic Corrosion. Materials. 2020; 13(9):2076. https://doi.org/10.3390/ma13092076
Chicago/Turabian StyleKabel, Khalid I., Ahmed Labena, Mohamed Keshawy, and Wael N. Hozzein. 2020. "Progressive Applications of Hyperbranched Polymer Based on Diarylamine: Antimicrobial, Anti-Biofilm and Anti-Aerobic Corrosion" Materials 13, no. 9: 2076. https://doi.org/10.3390/ma13092076
APA StyleKabel, K. I., Labena, A., Keshawy, M., & Hozzein, W. N. (2020). Progressive Applications of Hyperbranched Polymer Based on Diarylamine: Antimicrobial, Anti-Biofilm and Anti-Aerobic Corrosion. Materials, 13(9), 2076. https://doi.org/10.3390/ma13092076