On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances
Abstract
1. Introduction
2. Materials and Methods
3. Results and Validation of the Method
4. Experimental Validation and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sounas, D.L.; Fleury, R.; Alù, A. Unidirectional Cloaking Based on Metasurfaces with Balanced Loss and Gain. Phys. Rev. Applied 2015, 4, 014005. [Google Scholar] [CrossRef]
- De Ponti, J.M.; Colombi, A.; Ardito, R.; Braghin, F.; Corigliano, A.; Craster, R.V. Graded metasurface for enhanced sensing and energy harvesting. New J. Phys. 2020, 22. [Google Scholar] [CrossRef]
- Sharifian, M.; Mollaei, M.; Simovski, C. Dual-metasurface superlens: a comprehensive study. Phys. Rev. B 2019, 100, 205426. [Google Scholar]
- Fan, J.A. Concepts in Metasurface Optics for Imaging Applications. In Proceedings of the Imaging Systems and Applications, San Francisco, CA, USA, 26–29 June 2017. [Google Scholar]
- Tretyakov, S. Analytical Modeling in Applied Electromagnetics; Artech House: London, UK, 2003. [Google Scholar]
- Simovski, C. Composite Media with Weak Spatial Dispersion; Jenny Stanford: Boca Raton, FL, USA, 2018. [Google Scholar]
- Fernández Álvarez, H.; de Cos, M.E.; García, S.; Las-Heras, F. Enhancing the angular stability of artificial magnetic conductors through lumped inductors. Sensor. Actuat. A-Phys. 2018, 272, 223–230. [Google Scholar] [CrossRef]
- Fernández Álvarez, H.; De Cos Gómez, M.E.; Las-Heras, F. A Six-Fold Symmetric Metamaterial Absorber. Materials 2015, 8, 1590–1603. [Google Scholar] [CrossRef]
- Fernández Álvarez, H.; De Cos Gómez, M.E.; Las-Heras, F. A Thin C-Band Polarization and Incidence Angle-Insensitive Metamaterial Perfect Absorber. Materials 2015, 8, 1666–1681. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, I.; Rho, J. Challenges in fabrication towards realization of practical metamaterials. Microelectron. Eng. 2016, 163, 7–20. [Google Scholar] [CrossRef]
- de Cos, M.E.; Alvarez-Lopez, Y.; Las Heras Andres, F. A Novel Approach for RCS Reduction Using a Combination of Artificial Magnetic Conductors. Prog. Electromagn. Res. 2010, 107, 147–159. [Google Scholar] [CrossRef]
- de Cos, M.E.; Alvarez-Lopez, Y.; Las Heras Andres, F. On the Influence of Coupling AMC Resonances for RCS Reduction in the SHF Band. Prog. Electromagn. Res. 2011, 117, 103–119. [Google Scholar] [CrossRef]
- Park, J.W.; Van Tuong, P.; Rhee, J.Y.; Kim, K.W.; Jang, W.H.; Choi, E.H.; Chen, L.Y.; Lee, Y. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 2013, 21, 9691–9702. [Google Scholar] [CrossRef]
- Pan, W.; Yu, X.; Zhang, J.; Zeng, W. A novel design of broadband terahertz metamaterial absorber based on nested circle rings. IEEE Photonic. Tech. L. 2016, 28, 2335–2338. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Sungjoon, L. Design of metamaterial absorber using eight-resistive-arm cell for simultaneous broadband and wide-incidence-angle absorption. Sci. Rep. 2018, 8, 6633. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; He, B.; Zhao, J.; Gong, R. Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial. J. Electron. Mater. 2017, 46, 1293–1299. [Google Scholar] [CrossRef]
- Lee, Y.P.; Rhee, J.Y.; Yoo, Y.J.; Kim, K.W. Metamaterials for perfect absorption; Springer: Singapore, 2016. [Google Scholar]
- Wang, B.X.; Zhai, X.; Wang, G.Z.; Huang, W.Q.; Wang, L.L. Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber. IEEE Photon. J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Costa, F.; Genovesi, S.; Monorchio, A.; Manara, G. A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers. IEEE T. Antenn. Propag. 2013, 61, 1201–1209. [Google Scholar] [CrossRef]
- Wheeler, H.A. Transmission-Line Properties of a Strip on a Dielectric Sheet on a Plane. IEEE T. Microw. Theory 1977, 25, 631–647. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F. Net and partial inductance of a microstrip ground plane. IEEE T. Electromagn. C. 1998, 40, 33–46. [Google Scholar] [CrossRef]
- Shen, X.; Jun Cui, T.; Zhao, J.; Feng Ma, H.; Xiang Jiang, W.; Li, H. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 2011, 19, 9401–9407. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband metamaterial absorbers. Adv. Opt. Mater. 2019, 7, 1800995. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharyya, S.; Srivastava, K.V. Bandwidth-enhancement of an ultrathin polarization insensitive metamaterial absorber. Microw. Opt. Technol. Lett. 2014, 56, 350–354. [Google Scholar] [CrossRef]
- Mol, V.L.; Aanandan, C.K. An ultrathin microwave metamaterial absorber with enhanced bandwidth and angular stability. J. Phys. Commun. 2017, 1, 015003. [Google Scholar]
- Yang, H.; Cao, X.-Y.; Gao, J.; Li, W.; Yuan, Z.; Shang, K. Low RCS Metamaterial Absorber and Extending Bandwidth Based on Electromagnetic Resonances. Prog. Electromagn. Res. M 2013, 33, 31–44. [Google Scholar] [CrossRef]
- Fan, S.; Song, Y. Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures. J. Appl. Phys. 2018, 123, 085110. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, Y.; Wang, X.; Gong, R. Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator. J. Appl. Phys. 2014, 115, 064902. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, Y. Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment. Appl. Phys. A 2014, 117, 1915–1921. [Google Scholar] [CrossRef]
- Zadeh, A.K.; Karlsson, A. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Trans. Antennas Propag. 2009, 57, 2307–2314. [Google Scholar] [CrossRef]
- Hossain, M.J.; Faruque, M.R.I.; Islam, M.T.; Mat, K.B. A New Compact Octagonal Shape Perfect Metamaterial Absorber for Microwave Applications. Appl. Sci. 2017, 7, 1263. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, M.; Ji, Y.; Huang, W.; Yu, H.; Shi, J. Broadband terahertz metamaterial absorber based on simple multi-ring structures. AIP Adv. 2018, 8, 075206. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, J.; Pu, M.; Guo, Y.; Zhao, Z.; Ma, X.; Li, X.; Luo, X. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 2019, 6, 1801691. [Google Scholar] [CrossRef]
- Fernandez Alvarez, H.; de Cos Gomez M., E.; Las-Heras, F. Angular Stability of Metasurfaces: Challenges Regarding Reflectivity Measurements [Measurements Corner]. IEEE Antenn. Propag. M. 2016, 58, 74–81. [Google Scholar] [CrossRef]
- Fernandez Alvarez, H.; de Cos Gomez, M.E.; Las-Heras, F. Paving the way for suitable metasurfaces’ measurements under oblique incidence: Mono/Bi-static and Near/Far Field concerns. IEEE T. Instrum. Meas. 2020, 69, 1737–1744. [Google Scholar] [CrossRef]
(GHz) | (%) | (%) | FWHM (%) | ||
---|---|---|---|---|---|
Arlon25N 1.524 mm | IMG and OMG | 9.32 | 84 | 5.38 | 6.51 |
IMG | 8.88 | 73 | 2.23 | 3.42 | |
OMG | 9.81 | 28 | 0 | 5.38 | |
FR4 0.8 mm | IMG and OMG | 9.52 | 98 | 6.93 | 7.07 |
IMG | 9.4 | 77 | 2.25 | 2.95 | |
OMG | 9.2 | 99 | 4.02 | 4.02 |
(GHz) | (%) | (%) | FWHM (%) | ||
---|---|---|---|---|---|
Arlon25N 0.762 mm | IMG and OMG | 9.24 | 99 | 3.92 | 3.92 |
IMG | 9 | 97 | 1.56 | 1.56 | |
OMG | 8.96 | 92 | 2.36 | 2.36 |
Ref. | Method | (GHz) | (mm)* | Dielectric | Initial BW (%) | Final BW (%) | BW Improvement (times) | Symmetry Keeping |
---|---|---|---|---|---|---|---|---|
[26] | Horizontal Scaling | 10.37 | 1.07 | FR4 ( | 3.86% | 6.56% | 1.7 | No |
[27] | Horizontal Scaling | 5.26 | 1.67 | FR4 ( | 7.79% | 10.91% | 1.4 | No |
[28] | Vertical Scaling | 4.91 | 0.97 | FR4 ( | 3.2% | 7.91% | 2.5 | Yes |
[29] | Fractal Structure | 9.32 | 1.67 | FR4 ( | 10.73% | 18.56% | 1.7 | Yes |
[30] | Magnetic material | 2.65 | 2.42 | - | 41.5% | 76.63% | 1.9 | Yes |
[31] | Lumped Resistors | 4.1 | 5.034** /5.15 | FR4 ( | 4.94% | 68.8% | 13.9 | Yes |
This Work (DO1) | Nested Coupling | 9.52 | 0.836 /17.4 | FR4 ( | 4.02% | 7.07% | 1.8 | Yes |
This Work (DO2) | Nested Coupling | 9.24 | 0.798 /21.7 | Arlon25N ( | 2.36% | 3.92% | 1.7 | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández Álvarez, H.; de Cos Gómez, M.E.; Las-Heras Andrés, F. On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances. Materials 2020, 13, 2063. https://doi.org/10.3390/ma13092063
Fernández Álvarez H, de Cos Gómez ME, Las-Heras Andrés F. On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances. Materials. 2020; 13(9):2063. https://doi.org/10.3390/ma13092063
Chicago/Turabian StyleFernández Álvarez, Humberto, María Elena de Cos Gómez, and Fernando Las-Heras Andrés. 2020. "On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances" Materials 13, no. 9: 2063. https://doi.org/10.3390/ma13092063
APA StyleFernández Álvarez, H., de Cos Gómez, M. E., & Las-Heras Andrés, F. (2020). On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances. Materials, 13(9), 2063. https://doi.org/10.3390/ma13092063