Negative Effective Mass in Plasmonic Systems
Abstract
1. Introduction
2. Results and Discussion
2.1. Negative Effective Mass and Plasma Oscillations in Metals
2.2. Negative Mass and Low Frequency Plasmons in 1D Metallic Meso-Structures
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Felbacq, D.; Bouchitté, G. Metamaterials Modelling and Design, Taylor & Francis; Pan Stanford Publishing: Singapore, 2017. [Google Scholar]
- Engheta, N.; Ziolkowski, R.W. Electromagnetic Metamaterials: Physics and Engineering Explorations; IEEE Press: Hoes Lane, NJ, USA, 2006. [Google Scholar]
- Kshetrimayum, R.S. A brief intro to metamaterials. IEEE Potentials 2004, 23, 44–46. [Google Scholar] [CrossRef]
- Boardman, A.D.; Grimalsky, V.; Kivshar, Y.; Koshevaya, S.; Lapine, M.; Litchinitser, N.; Malnev, V.; Noginov, M.; Rapoport, Y.; Shalaev, V. Active and tunable metamaterials. Laser Photon. Rev. 2010, 5, 287–307. [Google Scholar] [CrossRef]
- Li, J.; Chan, C.T. Double-negative acoustic metamaterial. Phys. Rev. E 2004, 70, 055602. [Google Scholar] [CrossRef] [PubMed]
- Grima-Cornish, J.N.; Grima, J.; Attard, D. A Novel Mechanical Metamaterial Exhibiting Auxetic Behavior and Negative Compressibility. Materials 2019, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yin, L.; Fang, N.X. Focusing Ultrasound with an Acoustic Metamaterial Network. Phys. Rev. Lett. 2009, 102, 194301. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ding, C. Simulated and Experimental Research of Multi-Band Acoustic Metamaterial with a Single Resonant Structure. Materials 2019, 12, 3469. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef] [PubMed]
- Al Sabouni-Zawadzka, A.; Gilewski, W. Smart Metamaterial Based on the Simplex Tensegrity Pattern. Materials 2018, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 2012, 3, 756. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.T.; Li, J.; Fung, K.H. On extending the concept of double negativity to acoustic waves. J. Zhejiang Univ. A 2006, 7, 24–28. [Google Scholar] [CrossRef]
- Huang, H.; Sun, C.; Huang, G. On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 2009, 47, 610–617. [Google Scholar] [CrossRef]
- Tonks, L.; Langmuir, I. Oscillations in Ionized Gases. Phys. Rev. 1929, 33, 195–210. [Google Scholar] [CrossRef]
- Huang, H.H.; Sun, C.T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New J. Phys. 2009, 11, 13003. [Google Scholar] [CrossRef]
- Gracià-Salgado, R.; García-Chocano, V.M.; Torrent, D.; Sanchez-Dehesa, J. Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Phys. Rev. B 2013, 88, 224305. [Google Scholar] [CrossRef]
- Yao, S.; Zhou, X.; Hu, G. Investigation of the negative-mass behaviors occurring below a cut-off frequency. New J. Phys. 2010, 12, 103025. [Google Scholar] [CrossRef]
- Mizutani, U. Introduction to the Electron Theory of Metals; Cambridge University Press (CUP): Cambridge, UK, 2001. [Google Scholar]
- Ashcroft, N.; Mermin, N.D. Solid State Physics; Rinehart & Winston: Holt, NY, USA, 1976. [Google Scholar]
- Pendry, J.; Holden, A.J.; Youngs, I.; Stewart, W.J. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef] [PubMed]
- Veselago, V.; Braginsky, L.; Shklover, V.; Hafner, C. Negative Refractive Index Materials. J. Comput. Theor. Nanosci. 2006, 3, 189–218. [Google Scholar] [CrossRef]
- Teperik, T.V.; Popov, V.; De Abajo, F.J.G. Radiative decay of plasmons in a metallic nanoshell. Phys. Rev. B 2004, 69, 155402. [Google Scholar] [CrossRef]
- Henriquez, V.C.; García-Chocano, V.M.; Sanchez-Dehesa, J. Viscothermal Losses in Double-Negative Acoustic Metamaterials. Phys. Rev. Appl. 2017, 8, 014029. [Google Scholar] [CrossRef]
Metal | m1 (kg) | m2 (kg) | n (m−3) | ωp (Hz) | |
---|---|---|---|---|---|
Li | 1.17 × 10−26 | 9.1 × 10−31 | 4.7 × 1028 | 1.0 × 1016 | 90.0 |
Au | 3.27 × 10−25 | 9.1 × 10−31 | 5.9 × 1028 | 1.3 × 1016 | 152.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bormashenko, E.; Legchenkova, I. Negative Effective Mass in Plasmonic Systems. Materials 2020, 13, 1890. https://doi.org/10.3390/ma13081890
Bormashenko E, Legchenkova I. Negative Effective Mass in Plasmonic Systems. Materials. 2020; 13(8):1890. https://doi.org/10.3390/ma13081890
Chicago/Turabian StyleBormashenko, Edward, and Irina Legchenkova. 2020. "Negative Effective Mass in Plasmonic Systems" Materials 13, no. 8: 1890. https://doi.org/10.3390/ma13081890
APA StyleBormashenko, E., & Legchenkova, I. (2020). Negative Effective Mass in Plasmonic Systems. Materials, 13(8), 1890. https://doi.org/10.3390/ma13081890