Spark Plasma Sintered B4C—Structural, Thermal, Electrical and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Shrinkage Behavior, Structure, Thermal Expansion and Electrical Conductivity of Sintered B4C Ceramics
3.2. Elastic Properties of B4C by Impulse Excitation (IE) Technique and Resonant Ultrasound Spectroscopy
3.3. Young’s Modulus and Hardness by Nanoindentation and Vickers Hardness
3.4. Strength and Fracture Toughness of B4C
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
IE | Impulse Excitation Technique |
RUS | Resonant Ultrasound Spectroscopy |
CTE | coefficient of thermal expansion |
SEVNB | Single Edge V Notch Beam Technique |
RT | room temperature |
Ω | Electrical conductivity |
E, (IE) | Young’s modulus measured by IE |
E, (RUS) | Young’s modulus measured by RUS |
G, (RUS) | Shear modulus measured by RUS |
K, (RUS) | Bulk modulus measured by RUS |
ν (RUS) | Poisson’s ration measured by RUS |
E, (Nanoindentation) | Young’s, modulus measured by nanoindentation technique |
H, (Nanoindentation) | Hardness measured by nanoindentation technique |
HV (Vickers) | Vickers hardness |
σf (Flexure) | Flexural strength measured by 4-point bending |
mf (Flexure) | Weibull modulus measured by 4-point bending |
σ0f (Flexure) | Scale parameter for 4-point bending |
σb (Biaxial) | Biaxial strength for ring-on-ring test |
mb (Biaxial) | Weibull modulus for biaxial strength testing |
σ0b (Biaxial) | Scale parameter for biaxial strength testing |
K1C (SEVNB) | Fracture toughness measured by Single Edge V Notch Beam Technique |
References
- Lee, H.; Speyer, R. Hardness and Fracture Toughness of Pressureless-Sintered Boron Carbide (B4C). J. Am. Ceram. Soc. 2002, 85, 1291–1293. [Google Scholar] [CrossRef]
- Bouchacourt, M.; Thevenot, F. The properties and structure of the boron carbide phase. J. Less Common Met. 1981, 82, 227–235. [Google Scholar] [CrossRef]
- Lazzari, R.; Vast, N.; Besson, J.; Baroni, S.; Corso, A.D. Atomic Structure and Vibrational Properties of Icosahedral B4C Boron Carbide. Phys. Rev. Lett. 1999, 83, 3230–3233. [Google Scholar] [CrossRef] [Green Version]
- Werheit, H.; Rotter, H.; Shaoamberidze, S.; Leith-Jasper, A.; Tanaka, T. Gap-state Related Photoluminescence in Boron Carbide. Phys. Status Solidi B 2010, 248, 1275–1279. [Google Scholar] [CrossRef]
- Domnich, V.; Reynaud, S.; Haber, R.; Chhowalla, M. Boron Carbide: Structure, Properties and Stability under Stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. [Google Scholar] [CrossRef]
- Hosmane, N.; Maguire, J.; Yinghuai, Z. Polyhedral Boron Cage Compounds: An Account. Main Group Chem. 2007, 5, 251–265. [Google Scholar] [CrossRef]
- Zhdanov, G.; Sevastyanov, N. Crystal Structure of Boron Carbide (B4C). Dokl. Akad. Nauk SSSR 1941, 32, 832. [Google Scholar]
- Clarck, H.; Hoard, J. The Crystal Structure of Boron Carbide. J. Am. Chem. Soc. 1943, 65, 2115–2119. [Google Scholar] [CrossRef]
- Will, G.; Kossobutzki, K. An X-ray Structure Analysis of Boron Carbide, B13C2. J. Am. Ceram. Soc. 1976, 44, 87–96. [Google Scholar] [CrossRef]
- Thevenot, F. Boron Carbide—A Comprehensive Review. J. Eur. Ceram. Soc. 1990, 6, 205–225. [Google Scholar] [CrossRef]
- Aselage, T.; Tissot, R. Lattice Constants of Boron Carbides. J. Am. Ceram. Soc. 1992, 75, 2207–2212. [Google Scholar] [CrossRef]
- Werheit, H.; Kuhlman, U.; Lundstrom, T. On the Insertion of Carbon Atoms in B12 Icosahedra and the Structural Anisotropy of β-rhombohedral Boron and Boron Carbide. J. Alloys Compd. 1994, 204, 197–208. [Google Scholar] [CrossRef]
- Bylander, D.; Kleinman, L. Structure of B13C2. Phys. Rev. B 1991, 43, 1487–1491. [Google Scholar] [CrossRef]
- Morosin, B.; Kwei, G.; Lawson, A.; Aselage, T.; Emin, D. Neutron Powder Diffraction Refinement of Boron Carbides. J. Alloys Compd. 1995, 226, 121–125. [Google Scholar] [CrossRef]
- Kwei, G.; Morosin, B. Structures of the Boron-Rich Boron Carbides from Neutron Powder Diffraction: Implications for the Nature of the Inter-Icosahedral Chains. J. Phys. Chem. 1996, 100, 8031–8039. [Google Scholar] [CrossRef]
- Yakel, H. The Crystal Structure of Boron-Rich Boron Carbide. Acta Crystallogr. 1975, B31, 1797–1806. [Google Scholar] [CrossRef]
- Kirfel, A.; Gupta, A.; Will, G. The Nature of the Chemical Bonding in Boron Carbide, B13C2. I. Structure Refinement. Acta Crystallogr. 1979, B35, 1052–1059. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; He, J.; Liu, Z.; Tian, Y.; Sun, J.; Wang, H. Bond Iconicity and Hardness of B13C2-Like Structured ByX Crystals (X, C, N, O, P, As). Phys. Rev. B 2006, 73, 104–115. [Google Scholar] [CrossRef]
- Aydin, S.; Simsek, M. Hypothetically Superhard Boron Carbide Structures with a B11C Icosahedron and Three-atom Chain. Phys. Status Solidi B 2009, 246, 62–70. [Google Scholar] [CrossRef]
- Shirai, K.; Emura, S. Lattice Vibrations and the Bonding Nature of Boron Carbide. J. Phys. Condens. Matter 1996, 8, 10919–10929. [Google Scholar] [CrossRef]
- McClellan, K.; Chu, F.; Roper, J.; Shindo, I. Room Temperature Single Crystal Elastic Constants of Boron Carbide. J. Mater. Sci. 2001, 36, 3403–3407. [Google Scholar] [CrossRef]
- Niihara, K.; Nakahira, A.; Hirai, T. The Effect of Stoichiometry on Mechanical Properties of Boron Carbide. J. Am. Ceram. Soc. 1983, 67, C13–C14. [Google Scholar] [CrossRef]
- Emin, D.; Aselage, T.; Beckel, C.; Switendick, A.; Morosin, B. Boron-Rich Solids (AIP Conf. Proc. 231); American Institute of Physics: New York, NY, USA, 1991. [Google Scholar]
- Schwetz, K.; Grellner, W. The Influence of Carbon on the Microstructure and Mechanical Properties of Sintered Boron Carbide. J. Less Common Met. 1981, 82, 37–47. [Google Scholar] [CrossRef]
- Murthy, S. Elastic Properties of Boron Carbide. J. Mater. Sci. Lett. 1985, 4, 603–605. [Google Scholar] [CrossRef]
- Lee, S.; Bylander, D.; Kleinman, L. Elastic Moduli of B12 and Its Compounds. Phys. Rev. B 1992, 45, 3245–3247. [Google Scholar] [CrossRef]
- Greim, J.; Schwetz, A. Boron Carbide, Boron Nitride and Metal Borides. In Ullmann’s Encyclopedia of Industrial Chemistry 6; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Yamada, S.; Hirao, K.; Yamauchio, Y.; Kanzaki, S. B4C−CrB2 Composites with Improved Mechanical Properties. J. Eur. Ceram. Soc. 2003, 23, 561–565. [Google Scholar] [CrossRef]
- Dole, S.; Prochazka, S.; Doremus, R. Microstructural Coarsening during Sintering of Boron Carbide. J. Am. Ceram. Soc. 1989, 72, 958–966. [Google Scholar] [CrossRef]
- Lee, H.; Spreyer, R. Pressureless Sintering of Boron Carbide. J. Am. Ceram. Soc. 2004, 86, 1468–1473. [Google Scholar] [CrossRef]
- Bougoin, M.; Thevenot, F. Pressureless Sintering of Boron Carbide with an Addition of Polycarbosilane. J. Mater. Sci. 1987, 22, 109–114. [Google Scholar] [CrossRef]
- Roy, T.; Subramanian, C.; Suri, A. Presureless Sintering of Boron Carbide. Ceram. Int. 2006, 32, 227–233. [Google Scholar] [CrossRef]
- Champamge, B.; Angers, R. Mechanical Properties of Hot Pressed B-B4C Materials. J. Am. Ceram. Soc. 1979, 62, 149–153. [Google Scholar] [CrossRef]
- Orlovskaya, N.; Yarmolenko, S.; Sankar, J.; Kuebler, J.; Lugovy, M. Effects of Rolling and Hot Pressing on Mechanical Properties of Boron Carbide-based Ceramics. J. Mater. Sci. 2008, 43, 5942–5947. [Google Scholar] [CrossRef]
- Orlovskaya, N.; Lugovy, M.; Subbotin, V.; Radchenko, O.; Adams, J.; Chheda, M.; Shih, J.; Sankar, J. Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness. J. Mater. Sci. 2005, 40, 5483–5490. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Wen, R.; Wang, G.; Zhang, X.; Mu, J.; Che, H.; Wang, G. Comparisons of the Densification, Microstructure and Mechanical Properties of Boron Carbide Sintered by Hot Pressing and Spark Plasma Sintering. Ceram. Int. 2018, 44, 2615–2619. [Google Scholar] [CrossRef]
- Schwetz, K.; Grellner, W.; Lipp, A. Mechanical Properties of HIP Treated Sintered Boron Carbide. Inst. Phys. 1986, 75, 413–426. [Google Scholar]
- Ji, W.; Rehman, S.S.; Wang, W.; Wang, H.; Wang, Y.; Zhang, J.; Zhang, F.; Fu, Z. Sintering Boron Carbide Ceramics without Grain Growth by Plastic Deformation as the Dominant Densification Mechanism. Sci. Rep. 2015, 5, 15827. [Google Scholar] [CrossRef] [Green Version]
- Sivkov, A.; Rakhmatullin, I.; Shanekov, I.; Shanekova, Y. Boron Carbide B4C Ceramics with Enhanced Physico-mechanical Properties Sintered from Multimodal Powder of Plasma Dynamic Synthesis. Int. J. Refract. Met. Hard Mater. 2019, 78, 85–91. [Google Scholar] [CrossRef]
- Moshtaghioun, B.; Cumbrera-Hernandes, F.; Gomez-Garcia, D.; Dominiguez-Rodriguez, A.; Monshi, A.; Abbasi, M. Effect of Spark Plasma Sintering Parameters on Microstructure and Room-temperature Hardness and Toughness of Fine-grained Boron Carbide (B4C). J. Eur. Ceram. Soc. 2013, 33, 361–369. [Google Scholar] [CrossRef]
- Hayun, S.; Paris, V.; Dariel, M.; Frage, N.; Zaretzky, E. Static and Dynamic Mechanical Properties of Boron Carbide Processed by Spark Plasma Sintering. J. Eur. Ceram. Soc. 2009, 29, 3395–3400. [Google Scholar] [CrossRef]
- Eqtesadi, S.; Motealleh, A.; Perera, F.; Miranda, P.; Pajares, A.; Wendelbo, R.; Guiberteau, F.; Ortiz, A. Fabricating Geometrically-Complex B4C Ceramic Components by Robocasting and Pressureless Spark Plasma Sintering. Scr. Mater. 2018, 145, 14–18. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; He, X.; Xu, L.; Cao, X.; Peng, X.; Meng, C.; Wang, W.; Zhu, W.; Wang, Y. Sintering Dense Boron Carbide without Grain Growth under High Pressure. J. Am. Ceram. Soc. 2018, 101, 1289–1297. [Google Scholar] [CrossRef]
- Saunders, T.; Grasso, S.; Reece, M. Ultrafast-Contactless Flash Sintering using Plasma Electrodes. Sci. Rep. 2016, 6, 27222. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhang, Z.; Hu, Z.; Yin, S.; Wang, H.; Wang, H.; Cheng, X. Fully Dense B4C Ceramics Fabricated by Spark Plasma Sintering at Relatively Low Temperature. Mater. Res. Express 2018, 5, 10. [Google Scholar] [CrossRef]
- Gogotsi, G.; Groushevsky, Y.; Dashevskaya, O.; Gogotsi, Y.; Lavrenko, V. Complex Investigation of Hot-Pressed Boron Carbide. J. Less Common Met. 1986, 117, 225–230. [Google Scholar] [CrossRef]
- Gogotsi, G.; Firstov, S.; Vasil’ev, A.; Gogotsi, Y.; Kovylyaev, V. Mechanical Properties and Special Features of the Structure of Materials Based on Boron Carbide. Sov. Powd. Met. Metal Cer. 1987, 26, 589–594. [Google Scholar] [CrossRef]
- Sairam, K.; Sonber, J.; Murthy, T.; Subramanian, C.; Fotedar, R.; Nanekar, P.; Hunbli, R. Influence of Spark Plasma Sintering Parameters on Densification and Mechanical Properties of Boron Carbide. Int. J. Refract. Met. Hard Mater. 2014, 42, 185–192. [Google Scholar] [CrossRef]
- Moshtaghioun, B.; Cumbrera, F.; Ortiz, A.; Castillo-Rodriguez, M.; Gomez-Garcia, D. Additive-Free Superhard B4C with Ultrafine-Grained Dense Microstructures. J. Eur. Ceram. Soc. 2014, 34, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Devries, M.; Pittari, J.; Subash, G.; Mills, K.; Haines, C.; Zheng, J. Rate-Dependent Mechanical Behavior and Amorphization of Ultrafine-Grained Boron Carbide. J. Am. Ceram. Soc. 2016, 99, 3398–3405. [Google Scholar] [CrossRef]
- Swab, J.; Tice, J.; Wereszczak, A.; Kraft, R. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421. J. Am. Ceram. Soc. 2014, 98, 607–615. [Google Scholar] [CrossRef]
- Conzone, S.; Blumenthal, W.; Vainer, J. Fracture Toughness of TiB2 and B4C Using the Single-Edge Precracked Beam, Indentation Strength, Chevron Notched Beam and Indentation Strength Methods. J. Am. Ceram. Soc. 1995, 78, 2187–2192. [Google Scholar] [CrossRef]
- Kulikovsky, V.; Vorlicek, V.; Bohac, P.; Ctvrtlik, R.; Stranyanek, M.; Dejneka, A.; Jastrabik, L. Mechanical Properties and Structure of Amorphous and Crystalline B4C Films. Diamond Relat. Mater. 2009, 18, 27–33. [Google Scholar] [CrossRef]
- Domnich, V.; Gogotsi, Y. Nanoindentation and Raman Spectroscopy Studies of Boron Carbide Single Crystals. Appl. Phys. Lett. 2002, 81, 3783. [Google Scholar] [CrossRef]
- Dub, S.; Kushch, V.; Kaidash, O.; Sereda, V.; Panasyuk, T. Initiation of a Plastic Flow in Boron Carbide at Nanoindentation. J. Superhard Mater. 2015, 37, 8–13. [Google Scholar] [CrossRef]
- Moshtaghioun, B.; Laguna-Bercero, M.; Gomez-Garcia, D.; Pena, J. Does Grain Size Have an Influence on Intrinsic Mechanical Properties and Conduction Mechanism of Near Fully-Dense Boron Carbide Ceramics? J. Alloys Compd. 2019, 795, 408–415. [Google Scholar] [CrossRef]
- Kisly, P.; Kuzenkova, M.; Bondarchuk, N.; Grabchuk, B. Boron Carbide; Naukova Dumka: Kiev, Ukrain, 1988; p. 216, [In Russian]. [Google Scholar]
- Lipp, A. Boron Carbide: Production Properties, Applications; Technische Rundschau: Basel, Switzerland, 1966; Volume 58, pp. 1–47. [Google Scholar]
- Abzianidze, T.; Eristavi, A.; Shalamberidze, S. Strength and Creep in Boron Carbide (B4C) and Aluminum Dodecaboride (α-AlB12). J. Solid State Chem. 2000, 154, 191–193. [Google Scholar] [CrossRef]
- Swab, J.; Meredith, C.; Casem, D.; Gamble, W. Static and Dynamic Compression Strength of Hotpressed Boron Carbide Using a Dumbbell-Shaped. J. Mater. Sci. 2017, 52, 10073–10084. [Google Scholar] [CrossRef]
- Tsagareishvili, G.; Nakashidze, T.; Jobava, J.; Lomidze, G.; Khulelidze, D.; Tsagareishvili, D.; Tsagareishvili, O. Thermal Expansion of Boron and Boron Carbide. J. Less Common Met. 1986, 117, 159–161. [Google Scholar] [CrossRef]
- Telle, R. Boride—Eine Neue Hartstoffgeneration? Chem. Unserer Zeit 1988, 22, 93–99. [Google Scholar] [CrossRef]
- Hollenberg, G. Thermally Induced Stresses and Fractures in Boron Carbide Pellets. Ceram. Bull. 1980, 59, 538–541. [Google Scholar]
- Engberg, C.; Zehms, E. Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC and TiC Above 1000 °C. J. Am. Ceram. Soc. 1959, 42, 300–305. [Google Scholar] [CrossRef]
- Wood, C.; Emin, D. Conduction Mechanism in Boron Carbide. Phys. Rev. B 1984, 29, 4582–4587. [Google Scholar] [CrossRef]
- Schmechel, R.; Werheit, H. Evidence of the Superposition of Drude Type and Hopping Type Transport in Boron-Rich Solids. J. Solid State Chem. 1997, 133, 335–341. [Google Scholar] [CrossRef]
- Werheit, H.; Groot, K.; Malkemper, W. On the Metal-Insulator Transition of Boron Carbide. J. Less Common Met. 1981, 82, 153–162. [Google Scholar] [CrossRef]
- Determination of Young’s Modulus, Shear Modulus and Poisson’s Ratio; European Committee for Standardization: Brussels, Belgium, 2006.
- Migliori, A.; Sarrao, J. Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements and Nondestructive Evaluation; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar]
- Radovik, M.; Barsoum, M.; Ganguly, A.; Zhen, T.; Finkel, P.; Kalidindi, S.; Lara-Curzio, E. On the Elastic Properties and Mechanical Damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573 K Temperature Range. Acta Mater. 2006, 54, 2757–2767. [Google Scholar] [CrossRef]
- Radovic, M.; Lara-Curzio, E. Mechanical Properties of Tape Cast Nickel-Based Anode Materials for Solid Oxide Fuel Cells Before and After Reduction in Hydrogen. Acta Mater. 2004, 52, 5747–5756. [Google Scholar] [CrossRef]
- Radovic, M.; Lara-Cruzio, E.; Riester, L. Comparison of Different Experimental Techniques for Determination of Elastic Properties of Solids. Mater. Sci. Eng. A 2004, 368, 56–70. [Google Scholar] [CrossRef]
- Matsumoto, T.; Nagata, Y.; Nose, T.; Kawashima, K. Laser Ultrasonics for Measurements of High-Temperature Elastic Properties and Internal Temperature Distribution. Rev. Sci. Instrum. 2001, 72, 2777. [Google Scholar] [CrossRef]
- Oliver, W.; Pharr, G. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Pharr, G.; Oliver, W.; Brotzen, F. On the Generality of the Relationship among Contact Stiffness, Contact Area and Elastic Modulus during Indentation. J. Mater. Res. 1992, 7, 613–617. [Google Scholar] [CrossRef]
- Novikov, N.; Dub, S.; Miladin, Y.; Gridneva, I.; Chugunova, S. Application of Nanoidentation Method to Study a Semiconductor-Metal Phase Transformation in Silicon. J. Superhard Mater. 1996, 18, 32–40. [Google Scholar]
- Woirgard, J.; Tromas, S.; Gorard, J.; Audurier, V. Study of the Mechanical Properties of Ceramic Materials by the Nanoindentation Technique. J. Eur. Ceram. Soc. 1998, 18, 2297–2305. [Google Scholar] [CrossRef]
- Sneddon, I. The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Dieter, G. Mechanical Metallurgy, 3rd ed.; McGraw-Hill Book Company: Boston, MA, USA, 1986. [Google Scholar]
- Mechanical Properties of Monolithic Ceramics at Room Temperature—Part 1: Determination of Flexural Strength; Advanced Technical Ceramics: Brussles, Belgium, 2006.
- Carrasco-Pena, A.; Jordan, R.; Dieguez, J.; Coronado-Rodriguez, A.; Ozdemir, V.; Kwok, K.; Orlovskaya, N.; Vazquez-Molina, D.; Uribe-Romo, F.; Bolon, A.; et al. Design and Development of Ring-on-Ring Jig for Biaxial Strength Testing of Brittle Ceramic Composite Materials: ZrB2-30wt-%SiB6. Adv. Appl. Ceram. 2019, 118, 159–168. [Google Scholar] [CrossRef]
- ASTM C1499. Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature; ASTM C1499: West Conshohocken, PA, USA, 2003; Available online: www.astm.org (accessed on 31 March 2017). [CrossRef]
- Mashhadi, M.; Taheri-Nassaj, E.; Sglavo, V.; Sarpoolaky, H.; Ehsani, N. Effect of Al Addition on Pressureless Sintering of B4C. Ceram. Int. 2007, 35, 831–837. [Google Scholar] [CrossRef]
- Bogomol, I.; Borodianska, H.; Zhao, T.; Nishimura, T.; Sakka, Y.; Loboda, P.; Vasylkiv, O. A Dense and Tough (B4C–TiB2)–B4C ‘Composite Within a Composite’ Produced by Spark Plasma Sintering. Scr. Mater. 2014, 71, 17–20. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Aplicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar]
- Orlovskaya, N.; Peterlik, H.; Marczewski, M.; Kromp, K. The Validity of Weibull Estimators—Experimental Verification. J. Mater. Sci. 1997, 32, 1903–1907. [Google Scholar] [CrossRef]
- Orlovskaya, N.; Peterlik, H.; Steinkellner, W.; Kromp, K. Prediction of Strength of Recrystallized Siliconcarbide from Pore Size Measurement Part I The Bimodality of the Distribution. J. Mater. Sci. 2000, 35, 699–705. [Google Scholar] [CrossRef]
- Peterlik, H.; Orlovskaja, N.; Steinkellner, W.; Kromp, K. Prediction of Strength of Recrystallized Siliconcarbide from Pore Size Measurement Part II The Reliability of the Prediction. J. Mater. Sci. 2000, 35, 707–711. [Google Scholar] [CrossRef]
- CEN/TS 14425-5. Advanced Technical Ceramics—Test Methods for Determination of Fracture Toughness of Monolitic Ceramics; Comite Europeen de Normalisation: Brussels, Belgium, 2004. [Google Scholar]
- Kubler, J. Fracture Toughness of Ceramics Using the SEVNB Method: First Results of a Joint VAMAS/ESIS Round Robin. In 23rd Annual Conference on Composites, Advanced Ceramics, Materials and Structures; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Xie, K.; Dominich, V.; Farbaniec, L.; Bin, C.; Kuwelkar, K.; Ma, L.; MvCauley, J.; Haber, R.; Chen, M.; Hemker, K. Microstructural Characterization of Boron-Rich Boron Carbide. Acta Mater. 2017, 136, 202–214. [Google Scholar] [CrossRef]
- Werheit, H. Systematic Error in Conventionally Measured Raman Spectra of Boron Carbide—A General Issue in Solid State Raman Spectroscopy. Rev. Sci. Instrum. 2019, 90, 043114. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.C. Evaluation of Thermal Expansion of Al/B4C Metal Matrix Composites. In Proceedings of the 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22–25 February 2002; pp. 196–200. [Google Scholar]
- Huang, S.; Vanmeensel, K.; Malek, O.; van der Biest, O.; Vleugels, J. Microstructure and Mechanical Properties of Pulsed Electric Current Sintered B4C–TiB2 Composites. Mater. Sci. Eng. A 2011, 528, 1302–1309. [Google Scholar] [CrossRef]
- Huang, S.; Vanmeensel, K.; van der Biest, O.; Vleugels, J. In Situ Synthesis and Sensification of Submicrometer-Grained B4C–TiB2 Composites by Pulsed Electric Current Sintering. J. Eur. Ceram. Soc. 2011, 31, 637–644. [Google Scholar] [CrossRef]
- Vast, N.; Lazzari, R.; Besson, J.; Baroni, S.; Corso, A.D. Atomic Structure and Vibrational Properties of Icosahedral α-Boron and B4C Boron Carbide. Comput. Mater. Sci. 2000, 17, 127–132. [Google Scholar] [CrossRef]
- Sairam, K.; Sonber, J.; Murthy, T.; Subramanian, C.; Hubli, R.; Suri, A. Development of B4C–HfB2 Composites by Reaction Hot Pressing. Int. J. Refract. Met. Hard Mater 2012, 35, 32–40. [Google Scholar] [CrossRef]
- Dub, S.; Brazhkin, V.; Belous, V.; Tolmacheva, G.; Kononevskii, P. Comparative Nanoindentation of Single Crystals of Hard and Superhard Oxidess. J. Superhard Mater. 2014, 36, 217–230. [Google Scholar] [CrossRef]
- Werheit, H.; Manghnani, M.; Hushur, A. Phonon Peculiarities at the High-Pressure Phase Transition of B4.3C Boron Carbide. Solid State Sci. 2019, 97, 105978. [Google Scholar] [CrossRef]
- Werheit, H.; Manghnani, M.; Kuhlmann, U.; Hushur, A.; Shalamberidze, S. Mode Grüneisen Parameters of Boron Carbide. Solid State Sci. 2017, 72, 80–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Mashimo, T.; Uemura, Y.; Uchino, M.; Kodama, M.; Shibata, K.; Fukuoka, K.; Kikuchi, M.; Kobayashi, T.; Sekine, T. Shock Compression Behaviors of Boron Carbide (B4C). J. Appl. Phys. 2006, 100, 113536. [Google Scholar] [CrossRef]
- Yan, X.; Tang, Z.; Zhang, L.; Guo, J.; Jin, C.; Zhang, Y.; Goto, T.; McCauley, J.; Chen, M. Depressurization Amorphization of Single-Crystal Boron Carbide. Phys. Rev. Lett. 2009, 102, 075505. [Google Scholar] [CrossRef]
- Domnich, V.; Gogotsi, Y. Indentation Induced Phase Transformation in Organics. In High-Pressure Surface Science and Engineering, Bristol and Philadelphia; Institute of Physics: Bristol, UK, 2003; pp. 443–446. [Google Scholar]
- Vargas-Gonzalez, L.; Speyer, R.; Stephen, J. Flexural Strength, Fracture Toughness and Hardness of Silicon Carbide and Boron Carbide Armor Ceramics. Int. J. Appl. Ceram. Technol. 2010, 7, 643–651. [Google Scholar] [CrossRef]
- Manghnani, M.; Wang, P.; Zinin, P.; Rafaniello, W. Elastic and Vibrational Properties of B4C to 21 GPa. In Science and Technology of High Pressure; University Press: Hyderabad, India, 2000; pp. 945–948. [Google Scholar]
- Li, X.; Jiang, D.; Zhang, J.; Lin, Q.; Chen, Z.; Huang, Z. Densification Behavior and Related Phenomena of Spark Plasma Sintered Boron Carbide. Ceram. Int. 2014, 40, 4359–4366. [Google Scholar] [CrossRef]
CTE 10−6 K−1 (Dilatometer) | 6 |
---|---|
Ω, Om m | 2.84 × 10−3 ± 0.9 |
E, GPa (IE) | 442 ± 3 |
E, GPa (RUS) | 458.7 |
G, GPa (RUS) | 195.7 |
K, GPa (RUS) | 233.3 |
ν (RUS) | 0.173 |
E, GPa (Nanoindentation) | 419.2 ± 47.3 |
H, GPa (Nanoindentation) | 41.1 ± 5.7 |
HV, GPa (Vickers) | 28.5 ± 1.2 |
σf, MPa (Flexure) | 585 ± 70 |
mf (Flexure) | 9.9 |
σ0f, MPa (Flexure) | 611 |
σb, MPa (Biaxial) | 238.6 ± 122 |
mb (Biaxial) | 2.2 |
σ0b, MPa (Biaxial) | 271 |
K1c, MPa m1/2(SEVNB) | 3 ± 0.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuliiev, R.; Orlovskaya, N.; Hyer, H.; Sohn, Y.; Lugovy, M.; Ha, D.; Radovic, M.; Castle, E.G.; Reece, M.J.; Vallachira Warriam Sasikumar, P.; et al. Spark Plasma Sintered B4C—Structural, Thermal, Electrical and Mechanical Properties. Materials 2020, 13, 1612. https://doi.org/10.3390/ma13071612
Kuliiev R, Orlovskaya N, Hyer H, Sohn Y, Lugovy M, Ha D, Radovic M, Castle EG, Reece MJ, Vallachira Warriam Sasikumar P, et al. Spark Plasma Sintered B4C—Structural, Thermal, Electrical and Mechanical Properties. Materials. 2020; 13(7):1612. https://doi.org/10.3390/ma13071612
Chicago/Turabian StyleKuliiev, Ruslan, Nina Orlovskaya, Holden Hyer, Yongho Sohn, Mykola Lugovy, DongGi Ha, Miladin Radovic, Elinor G. Castle, Michael John Reece, Pradeep Vallachira Warriam Sasikumar, and et al. 2020. "Spark Plasma Sintered B4C—Structural, Thermal, Electrical and Mechanical Properties" Materials 13, no. 7: 1612. https://doi.org/10.3390/ma13071612
APA StyleKuliiev, R., Orlovskaya, N., Hyer, H., Sohn, Y., Lugovy, M., Ha, D., Radovic, M., Castle, E. G., Reece, M. J., Vallachira Warriam Sasikumar, P., Conti, L., Graule, T., Kuebler, J., & Blugan, G. (2020). Spark Plasma Sintered B4C—Structural, Thermal, Electrical and Mechanical Properties. Materials, 13(7), 1612. https://doi.org/10.3390/ma13071612