Plasmonic Emission of Bullseye Nanoemitters on Bi2Te3 Nanoflakes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Characterization
2.3. Cathodoluminescence
2.4. Numerical Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Saleemi, M.; Toprak, M.S.; Li, S.; Johnsson, M.; Muhammed, M. Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J. Mater. Chem. 2012, 22, 725–730. [Google Scholar] [CrossRef]
- Anandan, P.; Omprakash, M.; Azhagurajan, M.; Arivanandhan, M.; Babu, D.R.; Koyama, T.; Hayakawa, Y. Tailoring bismuth telluride nanostructures using a scalable sintering process and their thermoelectric properties. Cryst. Eng. Comm. 2014, 16, 7956–7962. [Google Scholar] [CrossRef]
- Zhao, M.; Bosman, M.; Danesh, M.; Zeng, M.; Song, P.; Darma, Y.; Rusydi, A.; Lin, H.; Qiu, C.W.; Loh, K.P. Visible surface plasmon modes in single Bi2Te3 nanoplate. Nano Lett. 2015, 15, 8331–8335. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hao, Q.; Cen, M.; Zhang, G.; Sun, J.; Mao, L.; Cao, T.; Zhou, C.; Jiang, P.; Yang, X.; et al. Observation and manipulation of visible edge plasmons in Bi2Te3 nanoplates. Nano Lett. 2018, 18, 2879–2884. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Gao, N.; Song, P.; Bosman, M.; Peng, B.; Sun, B.; Qiu, C.W.; Xu, Q.H.; Bao, Q.; et al. Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications. Adv. Mater. 2016, 28, 3138–3144. [Google Scholar] [CrossRef]
- Lee, K.S.; El-Sayed, M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225. [Google Scholar] [CrossRef]
- Boltasseva, A.; Atwater, H.A. Low-loss plasmonic metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef]
- Toudert, J.; Serna, R. Interband transitions in semi-metals, semiconductors, and topological insulators: A new driving force for plasmonics and nanophotonics. Opt. Mater. Express 2017, 7, 2299–2325. [Google Scholar] [CrossRef]
- Yin, J.; Krishnamoorthy, H.N.; Adamo, G.; Dubrovkin, A.M.; Chong, Y.; Zheludev, N.I.; Soci, C. Plasmonics of topological insulators at optical frequencies. NPG Asia Mater. 2017, 9, e425. [Google Scholar] [CrossRef]
- Liu, Z.; Steele, J.M.; Srituravanich, W.; Pikus, Y.; Sun, C.; Zhang, X. Focusing surface plasmons with a plasmonic lens. Nano Lett. 2005, 5, 1726–1729. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Liu, G.; Chen, Y.; Zhao, Q.; Guo, J.; Yang, S.; Cai, W. Surface plasmon resonance and polarization change properties in centrosymmetric nanoright-triangle dimer arrays. Opt. Eng. 2018, 57, 036112. [Google Scholar] [CrossRef]
- Luo, Y.; Chamanzar, M.; Apuzzo, A.; Salas-Montiel, R.; Nguyen, K.N.; Blaize, S.; Adibi, A. On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform. Nano Lett. 2015, 15, 849–856. [Google Scholar] [CrossRef]
- Mao, L.; Zang, T.; Ren, Y.; Lei, X.; Jiang, K.; Li, K.; Lu, Y.; Wang, P. Polarization-dependent transmittance of concentric rings plasmonic lens: A polarizing interference investigation. J. Opt. 2016, 18, 105006. [Google Scholar] [CrossRef]
- Normatov, A.; Ginzburg, P.; Berkovitch, N.; Lerman, G.M.; Yanai, A.; Levy, U.; Orenstein, M. Efficient coupling and field enhancement for the nano-scale: Plasmonic needle. Opt. Express 2010, 18, 14079–14086. [Google Scholar] [CrossRef]
- Garoli, D.; Zilio, P.; Gorodetski, Y.; Tantussi, F.; Angelis, F.D. Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip. Nano Lett. 2016, 16, 6636–6643. [Google Scholar] [CrossRef]
- Friedensen, S.; Mlack, J.T.; Drndić, M. Materials analysis and focused ion beam nanofabrication of topological insulator Bi2Se3. Sci. Rep. 2017, 7, 13466. [Google Scholar] [CrossRef]
- Bando, H.; Koizumi, K.; Oikawa, Y.; Daikohara, K.; Kulbachinskii, V.A.; Ozaki, H. The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy. J. Phys. Condens. Matter 2000, 12, 5607–5616. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids I.; Academic Press Inc.: Orlando, FL, USA, 1985; pp. 290–357. [Google Scholar]
- Tateishi, K.; Funato, M.; Kawakami, Y.; Okamoto, K.; Tamada, K. Highly enhanced green emission from InGaN quantum wells due to surface plasmon resonance on aluminum films. Appl. Phys. Lett. 2015, 106, 121112. [Google Scholar] [CrossRef]
- Yao, W.; Liu, S.; Liao, H.; Li, Z.; Sun, C.; Chen, J.; Gong, Q. Efficient directional excitation of surface plasmons by a single-element nanoantenna. Nano Lett. 2015, 15, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description | Value |
---|---|---|
T1 | Thickness of Bi2Te3 flakes | 190 nm |
T2 | Thickness of the Pt structure | 100 nm |
R1 | Radius of the central disk | 400 nm |
R2 | Radius of the Pt structure | 200 nm |
W1 | Width of grooves | 125 nm |
W2 | Width of rings | 250 nm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Q.; Li, X.; Liang, B. Plasmonic Emission of Bullseye Nanoemitters on Bi2Te3 Nanoflakes. Materials 2020, 13, 1531. https://doi.org/10.3390/ma13071531
Yan Q, Li X, Liang B. Plasmonic Emission of Bullseye Nanoemitters on Bi2Te3 Nanoflakes. Materials. 2020; 13(7):1531. https://doi.org/10.3390/ma13071531
Chicago/Turabian StyleYan, Qigeng, Xiaoli Li, and Baolai Liang. 2020. "Plasmonic Emission of Bullseye Nanoemitters on Bi2Te3 Nanoflakes" Materials 13, no. 7: 1531. https://doi.org/10.3390/ma13071531
APA StyleYan, Q., Li, X., & Liang, B. (2020). Plasmonic Emission of Bullseye Nanoemitters on Bi2Te3 Nanoflakes. Materials, 13(7), 1531. https://doi.org/10.3390/ma13071531