Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Resonant Methods
2.1.1. Resonant Perturbation Method
2.1.2. Resonator Method
2.2. Materials Characterization
2.3. Antenna Design and Fabrication
2.3.1. Case A at 2.45 GHz
2.3.2. Case B at 9.5 GHz
2.3.3. Case C at 38 GHz
3. Results and Discussions
3.1. Numerical Analysis
3.1.1. Case A at 2.45 GHz
3.1.2. Case B (9.5 GHz) and Case C (38 GHz)
3.2. Experimental Setup and Results
3.2.1. Case A at 2.45 GHz
Thermal Characterization at 2.45 GHz
3.2.2. Case B at 9.5 GHz
3.2.3. Case C at 38 GHz
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balanis, C.A. Advanced Engineering Electromagnetics; Wiley: New York, NY, USA, 1989; pp. 72–84. [Google Scholar]
- Lunkenheimer, P.; Krohns, S.; Gemander, F.; Schamhl, W.W.; Loidl, A. Dielectric Characterization of a Nonlinear Optical Material. Sci. Rep. 2015, 4, 6020. [Google Scholar] [CrossRef] [PubMed]
- Morton, W.E.; Hearle, J.W. Physical Properties of Textile Fibres, 4th ed.; The Textile Institute CRC Press Woodhead Publishing Ltd.: Shaston, UK, 2008. [Google Scholar]
- Lin, X.; Seet, B.-C.; Joseph, F. Fabric antenna with body temperature sensing for BAN applications over 5G wireless systems. In Proceedings of the 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015. [Google Scholar]
- Sarita Maurya, S.; Yadava, L.R.; Yadav, K.R. Effect of temperature variation on microstrip patch antenna and temperature compensation technique. Int. J. Wirel. Commun. Mob. Comput. 2013, 1, 35–40. [Google Scholar] [CrossRef]
- Moyo, P.; Brownjohn, J.M.W.; Suresh, R.; Tijn, S.C. Development of fiber Bragg grating sensors for monitoring civil infrastructure. Eng. Struct. 2005, 27, 1828–1834. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.-N.; Tao, X.-M.; Ding, X. Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Adv. Healthc. Mater. 2017, 6, 1601371. [Google Scholar] [CrossRef] [PubMed]
- Guler, U.; Chaudhuri, K.; Azzam, S.I.; Reddy, H.; Shalaev, V.; Boltasseva, A.; Kildishev, A. High Temperature Sensing with Refractory Plasmonic Metasurfaces. In Proceedings of the 12th International Congress on Artificial Materials for Novel Wave Phenomena—Metamaterials, Espoo, Finland, 27–30 August 2018. [Google Scholar]
- La Spada, L.; Spooner, C.; Haq, S.; Yang, H. Curvilinear MetaSurfaces for Surface Wave Manipulation. Nat. Sci. Rep. 2019, 9, 3107. [Google Scholar] [CrossRef]
- Sankaralingam, S.; Gupta, B. Determination of Dielectric Constant of Fabric Materials and Their Use as Substrates for Design and Development of Antennas for Wearable Applications. IEEE Trans. Instrum. Meas. 2010, 59, 3122–3130. [Google Scholar] [CrossRef]
- Lesnikowski, J. Dielectric permittivity measurement methods of textile substrate of textile transmission lines. Prz. Elektrotechniczny 2012, 88, 148–151. [Google Scholar]
- Khan, M.T.; Jilani, T.M.; Rehman, M.Z.; Khan, M.A.; Ali, M.S. A Brief Review of Measuring Techniques for Characterization of Dielectric Materials. ITEE J. 2012, 1, 1–5. [Google Scholar]
- Ramesh, G. Microstrip Antennas Design Handbook; Artech House Antennas and Propagation Library: Boston, MA, USA, 2000. [Google Scholar]
- Santas, J.G.; Alomainy, A.; Hao, Y. Textile antennas for on-body communications techniques and properties. In Proceedings of the IEEE 2nd EuCAP, New York, NY, USA, 11–16 November 2007. [Google Scholar]
- Chen, S.J.; Kaufmann, T.; Fumeaux, C. Wearable textile microstrip patch antennas for multiple ISM band communications. In Proceedings of the IEEE APSURSI, Orlando, FL, USA, 7–9 July 2013. [Google Scholar]
- La Spada, L.; Vegni, L. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. Materials 2018, 11, 603. [Google Scholar] [CrossRef]
- Vallozzi, L.; Vandendriesseche, W.; Rogier, H.; Hertleer, C.; Scarpello, M.L. Wearable textile GPS antenna for integration in protective garments. In Proceedings of the IEEE 4th EuCAP, Barcelona, Spain, 12 April 2010. [Google Scholar]
- Engku Embong, E.N.F.S.; Abdul Rani, K.N.; Rahim, H.M. The wearable textile-based microstrip patch antenna preliminary design and development. In Proceedings of the IEEE 3rd ICETSS, Bangkok, Thailand, 7–8 August 2017. [Google Scholar]
- Simorangkir, R.-B.V.B.; Yang, Y.; Esselle, K.P. Robust implementation of flexible wearable antennas with PDMS-embedded conductive fabric. In Proceedings of the 12th EUCAP, London, UK, 9–13 April 2018. [Google Scholar]
- Virili, M.; Rogier, H.; Alimenti, F.; Mezzanotte, P.; Roselli, L. Wearable Textile Antenna Magnetically Coupled to Flexible Active Electronic Circuits. IEEE AWPL 2014, 13, 209–212. [Google Scholar] [CrossRef]
- Tronquo, A.; Rogier, H.; Hertleer, C. Robus planar textile antenna for wireless body LANs operating in 2.45 GHz ISM band. IET Electron. Lett. 2006, 42, 142–143. [Google Scholar] [CrossRef]
- Guo, X.; Hang, Y.; Xie, Z.; Wu, C.; Gao, L.; Liu, C. Flexible and wearable 2.45 GHz CPW-fed antenna using inkjet-printing of silver nanoparticles on pet substrate. Microw. Opt. Technol. Lett. 2017, 59, 204–208. [Google Scholar] [CrossRef]
- Simorangkir, B.V.B.R.; Kiourti, A.; Esselle, K. UWB Wearable Antenna with a Full Ground Plane Based on PDMS-Embedded Conductive Fabric. IEEE AWPL 2018, 17, 493–496. [Google Scholar] [CrossRef]
- Sagor, H.M.; Abbasi, H.Q.; Alomainy, A.; Hao, Y. Compact and conformal ultra wideband antenna for wearable applications. In Proceedings of the 5th EuCAP, Rome, Italy, 11–15 April 2011. [Google Scholar]
- Paracha, K.N.; Rahim, A.K.S.; Soh, J.P.; Mohsen, K. Wearable Antennas: A Review of Materials. IEEE Access 2019, 7, 56694–56712. [Google Scholar] [CrossRef]
- Rais, N.H.M.; Soh, J.P.; Malek, F.; Ahmad, S.; Hasim, N.B.M.; Hall, P.S. A review of wearable antenna. In Proceedings of the IEEE LAPC, Loughborough, UK, 16–17 November 2009. [Google Scholar]
- Minyoung, S. 12 Wearable sensors for athletes. In Electronic Textiles: Smart Fabrics and Wearable Technology; Tilak, D., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 257–273. [Google Scholar]
- Corchia, L.; Monti, G.; De Benedetto, E.; Tarricone, L. Wearable Antennas for Remote Health Care Monitoring System. IJAP 2017. [Google Scholar] [CrossRef]
- Orefice, M.; Pirinoli, P.; Dassano, G. Electrically-small wearable antennas for emergency services applications. In Proceedings of the iWAT, Orlando, FL, USA, 29 February–2 March 2016. [Google Scholar]
- Ching, C.C.; Stewart, M.K.; Hagood, D.E.; Rashedi, R.N. Representing and Reconciling Personal Data and Experience in a Wearable Technology Gaming Project. IEEE TLT 2016, 9, 342–353. [Google Scholar] [CrossRef]
- Saeed, K.; Shafique, F.M.; Byrne, B.M.; Hunter, C.I. Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Application; InTech Book: New York, NY, USA, 2012. [Google Scholar]
- Chung, B.K. Dielectric constant measurement for thin material at microwave frequencies. PIER 2007, 75, 239–252. [Google Scholar] [CrossRef]
- Bernard, P.A.; Gautray, J.M. Measurement of dielectric constant using a microstrip ring resonator. IEEE Trans. Microw. Theory Tech. 1991, 39, 592–595. [Google Scholar] [CrossRef]
- Heinola, J.-M.; Tolsa, K. Dielectric characterization of printed wiring board materials using ring resonator techniques: A comparison of calculation models. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 717–726. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kabacik, P.; Bialkowski, M. The temperature dependence of substrate parameters and their effect on microstrip antenna performance. IEEE Trans. Antennas Propag. 1999, 47, 1042–1049. [Google Scholar] [CrossRef]
- Potey, P.-M.; Tuckley, K. Design of wearable textile antenna with various substrate and investigation on fabric selection. In Proceedings of the 3rd ICMAP, Dhanbad, India, 9–11 February 2018. [Google Scholar]
- Vallozzi, L.; Hertleer, C.; Rogier, H. Latest developments in the field of textile antennas. In Smart Textiles and Their Applications; Woodhead Publishing: Cambridge, UK, 2016; pp. 599–626. [Google Scholar]
- Bartlomiej Biernacki, B.; Zhang, S.; Whittow, W. 3D Printed Substrates with Graded Dielectric Properties and Their Applications to Patch Antennas. In Proceedings of the IEEE LAPC, Loughborough, UK, 14–15 November 2016. [Google Scholar]
- Panwar, H.S.; Khan, F.; Khanna, P. Design & Analysis of Square Microstrip Patch Antenna. IJRTE 2013, 2, 227–3878. [Google Scholar]
- Lin, X.; Seet, B.-C.; Joseph, F. Wearable humidity sensing antenna for BAN applications over 5G networks. In Proceedings of the IEEE 19th WAMICON, Clearwater, FL, USA, 9–10 April 2018. [Google Scholar]
- Software, CST Studio Suite. 2017. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/?utm_source=cst.com&utm_medium=301&utm_campaign=cst (accessed on 10 March 2020).
- Lehner, G. Electromagnetic Field Theory for Engineers and Physicists; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Institute for Applied Physics. Dielectric Properties of Body Tissues in the Frequency Range 10–100 GHz Italian National Research Council. Available online: http://niremf.ifac.cnr.it/tissprop/ (accessed on 1 February 2020).
Fabric | εr | tan δ |
---|---|---|
Cotton | 1.58 | 0.02 |
Jeans | 1.62 | 0.018 |
Viscose | 1.64 | 0.016 |
Lycra | 1.68 | 0.008 |
Tissue | εr | tan δ | σ (S/m) |
---|---|---|---|
Dry skin | 38.007 | 0.28262 | 1.464 |
Fat | 5.2801 | 0.14524 | 0.1045 |
Muscle | 52.729 | 0.24194 | 1.7388 |
Temperature Increment | Cotton | Jeans | Viscose | Lycra |
---|---|---|---|---|
10 Deg | 9/11 MHz | 9/11 MHz | 9/11 MHz | 9/11 MHz |
Temperature Increment | 2.45 GHz | 9.5 GHz | 38 GHz |
---|---|---|---|
10 Deg | 10 MHz | 40 MHz | 150 MHz |
5 Deg | N/A | 20 MHz | 75 MHz |
1 Deg | N/A | N/A | 15 MHz |
Temperature Increment | 2.45 GHz | 9.5 GHz | 38 GHz |
---|---|---|---|
10 Deg | 1.67 × 10−2 | 1.67 × 10−2 | 1.67 × 10−2 |
5 Deg | N/A | 8.35 × 10−3 | 8.35 × 10−3 |
1 Deg | N/A | N/A | 1.67 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibanez-Labiano, I.; Alomainy, A. Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures. Materials 2020, 13, 1271. https://doi.org/10.3390/ma13061271
Ibanez-Labiano I, Alomainy A. Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures. Materials. 2020; 13(6):1271. https://doi.org/10.3390/ma13061271
Chicago/Turabian StyleIbanez-Labiano, Isidoro, and Akram Alomainy. 2020. "Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures" Materials 13, no. 6: 1271. https://doi.org/10.3390/ma13061271
APA StyleIbanez-Labiano, I., & Alomainy, A. (2020). Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures. Materials, 13(6), 1271. https://doi.org/10.3390/ma13061271