Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review
Abstract
:1. Introduction
2. Oil Palm Empty Fruit Bunch (OPEFB)
3. Regenerated Cellulose
3.1. Membrane
3.2. Hydrogel
4. Nanocellulose
4.1. Cellulose Nanofibers (CNF) from OPEFB
4.2. Cellulose Nanocrystal (CNC) from OPEFB
5. Potential Preparation Methods for the Oil Palm Empty Fruit Bunch Nanocellulose Hydrogel
5.1. Homogenization Processing Method for Nanocellulose Hydrogel
5.2. Grafting of Nanocellulose Hydrogel—Surface-Initiated Free Radical Polymerization
Polymer/Monomer | Source of Nanocellulose | Water Source | Initiator, Cross-linker, Catalyst | Ref |
---|---|---|---|---|
Acrylamide (AA) | Cotton pulp | De-ionized (DI) water | Ammonium persulfate (APS), N,N’-Methylene-bisacrylamide (MBA), N,N,N′,N′-tetramethylrthylenediamine (TMEDA) | [92] |
AA | Commercial bleached kraft soft wood pulp | DI water | Potassium persulfate (K2S2O8), MBA, TEMED | [93] |
AA | Cotton fibers | Distilled water | K2S2O8, MBA, TEMED | [94] |
Sodium acrylate (SA) | Cellulose pulp | Double distilled water | K2S2O8, MBA, TEMED | [95,96] |
Cassava starch and SA | Cotton fibers | distilled water | K2S2O8, MBA, - | [97] |
N-Isopropyl acrylamide (purified by recrystallization iꞑ-heptane twice) | Acrylate-functional nanocellulose & HCl nanocellulose | Unclear source of water | APS, MBA, TEMED | [98] |
AA | Polar wood | Unclear source of water | K2S2O8, MBA, - | [99] |
N-isopropyl acrylamide | Bleached bamboo pulp | DI water | K2S2O8, MBA, N,N,N’,N’-tetramethyl-ethane-1,2-diamine (TMEDA) | [100] |
Softwood fibers (Norwegian spruce) | Plant-derived nanocellulose | Ultrapure water | Not mentioning | [101] |
AA | Bleached wood pulp | DI water | K2S2O8, MBA, - Ionic crosslinker (CaCl2) | [102] |
2-Dimethylamino ethyl methacrylate | Spruce bleached soft wood pulp | DI water | APS, MBA | [103] |
AA | Softwood kraft pulp | DI water | APS, MBA, TEMED Ionic crosslinker (Iron (III) chloride hexahydrate [FeCl3·6H2O]) | [104] |
5.3. Freeze-Thaw Cycle Processing Method for Nanocellulose Hydrogel
5.4. 3D Printing Nanocellulose Hydrogel Processing Method
6. Potential Applications of OPEFB Nanocellulose Hydrogel
7. Challenges and Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gan, S.; Zakaria, S.; Chia, C.H.; Padzil, F.N.M.; Ng, P. Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel. Carbohydr. Polym. 2015, 115, 62–68. [Google Scholar]
- Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose Nanomaterials-Binding Properties and Applications: A Review. Molecules 2018, 23, 10. [Google Scholar]
- Anuar, N.I.S.; Chin Hua, C.; Chunhong, W.; Jalaluddin, H.; Sarani, Z.; Sinyee, G. Comparison of the morphological and mechanical properties of oil Palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind. Crops Prod. 2019, 127, 55–65. [Google Scholar]
- Chiew, Y.L.; Shimada, S. Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer—A case study of Malaysia. Biomass Bioenergy 2013, 51, 109–124. [Google Scholar]
- Kong, S.-H.; Loh, S.-K.; Bachmann, R.T.; Rahim, S.A.; Salimon, J. Biochar from oil palm biomass: A review of its potential and challenges. Renew. Sustain. Energy Rev. 2014, 39, 729–739. [Google Scholar]
- Chiew, Y.L.; Iwata, T.; Shimada, S. System analysis for effective use of palm oil waste as energy resources. Biomass Bioenergy 2011, 35, 2925–2935. [Google Scholar]
- Rafidah, D.; Mohamed, A.Z.; Hazwani, H.A.; Ibrahim, R.; Luqman Chuah, A.; Adnan, S.; Paridah, M.T.; Jalaluddin, H. Characterisation of pulp and paper manufactured from oil palm empty fruit bunches and kenaf fibres. Pertanika J. Trop. Agric. Sci. 2017, 40, 449–457. [Google Scholar]
- Ng, P.; Chia, C.-H.; Zakaria, S.; Gan, S.; Kaco, H.; Padzil, F.; Wei, C. Preparation of cellulose hydrogel from oil palm empty fruit bunch fibers cellulose. Polym. Res. J. 2015, 9, 449–459. [Google Scholar]
- French, A.D. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 2017, 24, 4605–4609. [Google Scholar]
- Fei, B.; Wach, R.A.; Mitomo, H.; Yoshii, F.; Kume, T. Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J. Appl. Polym. Sci. 2000, 78, 278–283. [Google Scholar]
- Mohammad Padzil, F.N.; Gan, S.; Zakaria, S.; Mohamad, S.F.; Mohamed, N.H.; Seo, Y.B.; Ellis, A.V. Increased solubility of plant core pulp cellulose for regenerated hydrogels through electron beam irradiation. Cellulose 2018, 25, 4993–5006. [Google Scholar]
- Alves, L.C.H. Cellulose Solutions: Dissolution, Regeneration, Solution Structure and Molecular Interactions; University of Coimbra: Coimbra, Portugal, 2015. [Google Scholar]
- Winarti, C.; Arif, A.; Sasmitaloka, K.S. Cellulose-Based Nanohydrogel from Corncob with Chemical Crosslinking Methods. IOP Conf. Ser. Earth Environ. Sci. 2018, 209, 012043. [Google Scholar]
- Gopakumar, D.; Thomas, S.; Owolabi, F.A.T.; Thomas, S.; Nzihou, A.; Rizal, S.; Khalil, H.A. Nanocellulose Based Aerogels for Varying Engineering Applications. Encycl. Renew. Sustain. Mater. 2020, 2, 155–165. [Google Scholar] [CrossRef]
- Kim, C.H.; Youn, H.J.; Lee, H.L. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 2015, 22, 3715–3724. [Google Scholar]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar]
- Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 2019, 209, 130–144. [Google Scholar] [PubMed]
- Malaysia, A.I. National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Biomass Industry; National Innovation Agency of Malaysia: Selangor, Malaysia, 2013; Available online: https://www.cmtevents.com/MediaLibrary/BStgy2013RptAIM.pdf (accessed on 2 November 2019).
- Ozturk, M.; Saba, N.; Altay, V.; Iqbal, R.; Hakeem, K.R.; Jawaid, M.; Ibrahim, F.H. Biomass Bioenergy: An overview of the development potential in Turkey and Malaysia. Renew. Sustain. Energy Rev. 2017, 79, 1285–1302. [Google Scholar]
- Goh, C.S.; Tan, K.T.; Lee, K.T.; Bhatia, S. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresour. Technol. 2010, 101, 4834–4841. [Google Scholar]
- MPOB Malaysian Palm Oil Board (MPOB) Oil Palm Planted Area 2013 to 2018. Available online: http://bepi.mpob.gov.my/images/area/2018/Area_summary.pdf (accessed on 2 November 2019).
- Abdullah, N.; Sulaiman, F. The oil palm wastes in Malaysia. In Biomass Now—Sustainable Growth and Use; Mativic, M., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Abdul Khalil, H.P.S.; Alwani, M.; Ramli, R.; Kamarudin, H.; Khairul, A. Chemical Composition, Morphological Characteristics, and Cell Wall Structure of Malaysian Oil Palm Fibers. Polym. Plast. Technol. Eng. 2008, 47, 273–280. [Google Scholar]
- Salleh, K.M.; Zakaria, S.; Sajab, M.S.; Gan, S.; Kaco, H. Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int. J. Biol. Macromol. 2019, 131, 50–59. [Google Scholar]
- Fink, H.P.; Weigel, P.; Purz, H.J.; Ganster, J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 2001, 26, 1473–1524. [Google Scholar]
- Hongo, T.; Inamoto, M.; Iwata, M.; Matsui, T.; Okajima, K. Morphological and structural formation of the regenerated cellulose membranes recovered from its cuprammonium solution using aqueous sulfuric acid. J. Appl. Polym. Sci. 1999, 72, 1669–1678. [Google Scholar]
- Inamoto, M.; Miyamoto, I.; Hongo, T.; Iwata, M.; Okajima, K. Morphological Formation of the Regenerated Cellulose Membranes Recovered from Its Cuprammonium Solution Using Various Coagulants. Polym. J. 1996, 28, 507–512. [Google Scholar]
- Manabe, S.-I.; Kamata, Y.; Iijima, H.; Kamide, K. Some Morphological Characteristics of Porous Polymeric Membranes Prepared by “Micro-Phase Separation Method”. Polym. J. 1987, 19, 391–404. [Google Scholar]
- Abe, Y.; Mochizuki, A. Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. I. Effect of membrane preparation conditions on its permeation characteristics. J. Appl. Polym. Sci. 2002, 84, 2302–2307. [Google Scholar]
- Bang, Y.H.; Lee, S.; Park, J.B.; Cho, H.H. Effect of coagulation conditions on fine structure of regenerated cellulosic films made from cellulose/N-methylmorpholine-N-oxide/H2O systems. J. Appl. Polym. Sci. 1999, 73, 2681–2690. [Google Scholar]
- Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar]
- Spoljaric, S.; Salminen, A.; Luong, N.D.; Seppälä, J. Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur. Polym. J. 2014, 56, 105–117. [Google Scholar]
- Xu, Z.; Li, J.; Zhou, H.; Jiang, X.; Yang, C.; Wang, F.; Pan, Y.; Li, N.; Li, X.; Shi, L.; et al. Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: Poly(ethylene glycol) (PEG) as porogen. RSC Adv. 2016, 6, 43626–43633. [Google Scholar]
- Cheng, Q.; Ye, D.; Chang, C.; Zhang, L. Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J. Membr. Sci. 2017, 525, 1–8. [Google Scholar]
- Dai, Z.; Deng, J.; Yu, Q.; Helberg, R.M.L.; Janakiram, S.; Ansaloni, L.; Deng, L. Fabrication and Evaluation of Bio-Based Nanocomposite TFC Hollow Fiber Membranes for Enhanced CO2 Capture. ACS Appl. Mater. Interfacess 2019, 11, 10874–10882. [Google Scholar]
- Schiffman, J.D.; Schauer, C.L. A Review: Electrospinning of Biopolymer Nanofibers and their Applications. Polym. Rev. 2008, 48, 317–352. [Google Scholar]
- Ansaloni, L.; Salas-Gay, J.; Ligi, S.; Baschetti, M.G. Nanocellulose-based membranes for CO2 capture. J. Membr. Sci. 2017, 522, 216–225. [Google Scholar]
- Dai, Z.; Ottesen, V.; Deng, J.; Helberg, R.M.L.; Deng, L. A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 Separation. Fibers 2019, 7, 40. [Google Scholar]
- Luo, X.; Zhang, L. New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res. Int. 2013, 52, 387–400. [Google Scholar]
- Silva, A.K.; Richard, C.; Bessodes, M.; Scherman, D.; Merten, O.W. Growth factor delivery approaches in hydrogels. Biomacromolecules 2009, 10, 9–18. [Google Scholar]
- Bhattacharyya, S.; Guillot, S.; Dabboue, H.; Tranchant, J.-F.; Salvetat, J.-P. Carbon Nanotubes as Structural Nanofibers for Hyaluronic Acid Hydrogel Scaffolds. Biomacromolecules 2008, 9, 505–509. [Google Scholar]
- Chan, A.W.; Whitney, R.A.; Neufeld, R.J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 2009, 10, 609–616. [Google Scholar]
- Li, X.; Xu, S.; Pen, Y.; Wang, J. The swelling behaviors and network parameters of cationic starch-g-acrylic acid/poly(dimethyldiallylammonium chloride) semi-interpenetrating polymer networks hydrogels. J. Appl. Polym. Sci. 2008, 110, 1828–1836. [Google Scholar]
- Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 2010, 46, 92–100. [Google Scholar]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Im, S.J.; Choi, Y.M.; Subramanyam, E.; Huh, K.M.; Park, K. Synthesis and characterization of biodegradable elastic hydrogels based on poly(ethylene glycol) and poly(ε-caprolactone) blocks. Macromol. Res. 2007, 15, 363–369. [Google Scholar] [CrossRef]
- Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; et al. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 2007, 8, 1934–1941. [Google Scholar] [CrossRef]
- Fall, A.B.; Lindström, S.B.; Sprakel, J.; Wågberg, L. A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 2013, 9, 1852–1863. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Formation of hydrogels from cellulose nanofibers. Carbohydr. Polym. 2011, 85, 733–737. [Google Scholar] [CrossRef]
- Chirayil, C.; Mathew, L.; Thomas, S. Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev. Adv. Mater. Sci. 2014, 37, 20–28. [Google Scholar]
- Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Yang, G.C.; Zeng, H.M. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 2001, 61, 1437–1447. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Rojas, O.J.; Lucia, L.A.; Sain, M. Cellulosic Nanocomposites: A Review. BioResources 2008, 3, 52. [Google Scholar]
- Bai, W.; Holbery, J.; Li, K. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 2009, 16, 455–465. [Google Scholar] [CrossRef]
- Fahma, F.; Iwamoto, S.; Hori, N.; Iwata, T.; Takemura, A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 2010, 17, 977–985. [Google Scholar] [CrossRef]
- Fatah, I.; Khalil, H.P.S.; Hossain, M.; Astimar, A.A.; Davoudpour, Y.; Dungani, R.; Bhat, A.H. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials. Polymers 2014, 6, 2611–2624. [Google Scholar] [CrossRef] [Green Version]
- Fareezal, A.; Izzati, M.; Shazana, M.; Ibrahim, R.; Rosazley, R.; Mohamed, A.Z. Characterization of Nanofibrillated Cellulose Produced From Oil Palm Empty Fruit Bunch Fibers (OPEFB) Using Ultrasound. J. Contemp. Issues Thought 2016, 6, 30–37. [Google Scholar]
- Goh, K.Y.; Ching, Y.C.; Chuah, C.H.; Abdullah, L.C.; Liou, N.-S. Individualization of microfibrillated celluloses from oil palm empty fruit bunch: Comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 2016, 23, 379–390. [Google Scholar] [CrossRef]
- Supian, M.A.F.; Amin, K.N.M.; Jamari, S.S.; Mohamad, S. Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method. J. Environ. Chem. Eng. 2019, 103024. [Google Scholar] [CrossRef]
- Solikhin, A.; Hadi, Y.; Massijaya, M.; Nikmatin, S. Novel Isolation of Empty Fruit Bunch Lignocellulose Nanofibers Using Different Vibration Milling Times-Assisted Multimechanical Stages. Waste Biomass Valorization 2016, 11. [Google Scholar] [CrossRef]
- Muna, N.; Fauzi, A.A.N.; Setyaningsih, D.; Yuliani, S. Isolation of Microfibrilated Cellulose from Oil Palm Empty Fruit Bunches (EFB) Through Peracetic Acid Delignification and Enzyme Hydrolysis. IOP Conf. Ser. Earth Environ. Sci. 2019, 309, 012063. [Google Scholar] [CrossRef]
- Hastuti, N.; Kanomata, K.; Kitaoka, T. Characteristics of TEMPO-Oxidized Cellulose Nanofibers from Oil Palm Empty Fruit Bunches Produced by Different Amounts of Oxidant. IOP Conf. Ser. Earth Environ. Sci. 2019, 359, 012008. [Google Scholar] [CrossRef]
- Hastati, D.; Hambali, E.; Syamsu, K.; Warsiki, E. Preparation and Characterization of Nanocelluloses from Oil Palm Empty Fruit Bunch Cellulose. J. Jpn. Inst. Energy 2019, 98, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Lani, N.S.; Ngadi, N.; Johari, A.; Jusoh, M. Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites. J. Nanomat. 2014, 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Salehudin, H.; Salleh, E.; Muhamad, I.; Salleh, E. Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Mater. Res. Innov. 2014, 18, S6–S322. [Google Scholar] [CrossRef]
- Mok, C.F.; Ching, Y.C.; Muhamad, F.; Abu Osman, N.A.; Singh, R. Poly(vinyl alcohol)-α-chitin composites reinforced by oil palm empty fruit bunch fiber-derived nanocellulose. Int. J. Polym. Anal. Charact. 2017, 22, 294–304. [Google Scholar] [CrossRef]
- Ferrer, A.; Filpponen, I.; Rodríguez, A.; Laine, J.; Rojas, O.J. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: Production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour. Technol. 2012, 125, 249–255. [Google Scholar] [CrossRef]
- Septevani, A.A.; Rifathin, A.; Sari, A.A.; Sampora, Y.; Ariani, G.N.; Sudiyarmanto; Sondari, D. Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydr. Polym. 2020, 229, 115433. [Google Scholar] [CrossRef]
- Mohamad Haafiz, M.K.; Eichhorn, S.J.; Hassan, A.; Jawaid, M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 2013, 93, 628–634. [Google Scholar] [CrossRef]
- Al-Dulaimi, A.A.; Wanrosli, W.D. Isolation and Characterization of Nanocrystalline Cellulose from Totally Chlorine Free Oil Palm Empty Fruit Bunch Pulp. J. Polym. Environ. 2017, 25, 192–202. [Google Scholar] [CrossRef]
- Pujiasih, S.; Kurnia; Masykur, A.; Kusumaningsih, T.; Saputra, O.A. Silylation and characterization of microcrystalline cellulose isolated from indonesian native oil palm empty fruit bunch. Carbohydr. Polym. 2018, 184, 74–81. [Google Scholar] [CrossRef]
- Budhi, Y.W.; Fakhrudin, M.; Culsum, N.T.U.; Suendo, V.; Iskandar, F. Preparation of cellulose nanocrystals from empty fruit bunch of palm oil by using phosphotungstic acid. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012063. [Google Scholar] [CrossRef]
- Indarti, E.; Marwan; Wan Daud, W.R. Thermal Stability of Oil Palm Empty Fruit Bunch (OPEFB) Nanocrystalline Cellulose: Effects of post-treatment of oven drying and solvent exchange techniques. J. Phys. Conf. Ser. 2015, 622. [Google Scholar] [CrossRef] [Green Version]
- Indarti, E.; Marwan; Wan Rosli, W.D. Morphological and Optical Properties of Polylactic Acid Bionanocomposite Film Reinforced with Oil Palm Empty Fruit Bunch Nanocrystalline Cellulose. J. Phys. Conf. Ser. 2019, 1295, 012053. [Google Scholar] [CrossRef] [Green Version]
- Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in cellulose nanomaterials. Cellulose 2018, 25, 2151–2189. [Google Scholar] [CrossRef]
- Kayra, N.; Aytekin, A.Ö. Synthesis of Cellulose-Based Hydrogels: Preparation, Formation, Mixture, and Modification. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Basel, Switzerland, 2018; pp. 1–28. [Google Scholar]
- Zailuddin, N.; Husseinsyah, S. Tensile Properties and Morphology of Oil Palm Empty Fruit Bunch Regenerated Cellulose Biocomposite Films. Procedia Chem. 2016, 19, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Aouada, F.A.; de Moura, M.R.; Orts, W.J.; Mattoso, L.H.C. Preparation and Characterization of Novel Micro- and Nanocomposite Hydrogels Containing Cellulosic Fibrils. J. Agric. Food. Chem. 2011, 59, 9433–9442. [Google Scholar] [CrossRef]
- Niazi, M. Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J. Ind. Eng. Chem. 2017. [Google Scholar]
- Mathew, A.P.; Oksman, K.; Pierron, D.; Harmad, M.-F. Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 2011, 19. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Jiang, Y.; Zhang, Q.; Shi, H.; Liu, D. 3D printing process of oxidized nanocellulose and gelatin scaffold. J. Biomater. Sci. Polym. Ed. 2018, 29, 1498–1513. [Google Scholar] [CrossRef]
- Mathew, A.P.; Oksman, K.; Pierron, D.; Harmand, M.F. Biocompatible fibrous networks of cellulose nanofibres and collagen crosslinked using genipin: Potential as artificial ligament/tendons. Macromol. Biosci. 2013, 13, 289–298. [Google Scholar] [CrossRef]
- Wohlhauser, S.; Delepierre, G.; Labet, M.; Morandi, G.; Thielemans, W.; Weder, C.; Zoppe, J.O. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules 2018, 51, 6157–6189. [Google Scholar] [CrossRef] [Green Version]
- Hans-Georg, E. Polyinsertionen. In Makromoleküle; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1999; pp. 262–298. [Google Scholar]
- Karaaslan, M.; Tshabalala, M.; Yelle, D.; Gisela, B.-D. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr. Polym. 2011, 86, 192–201. [Google Scholar] [CrossRef]
- Denisov, E.T.; Denisova, T.G.; Pokidova, T.S. Handbook of Free Radical Initiators; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Masoud, M.; Vahid, S.; Mostafa, Y.; Daryoosh, V.; Lobat, T. Recent trends in tissue engineering applications of atom transfer radical polymerization. In Nanomedicine; Alexander, S.A., de Mel, A., Deepak, M., Kalaskar, Eds.; One Central Press (OCP): Cheshire, UK, 2014. [Google Scholar]
- Carlmark, A.; Larsson, E.; Malmström, E. Grafting of cellulose by ring-opening polymerisation—A review. Eur. Polym. J. 2012, 48, 1646–1659. [Google Scholar] [CrossRef] [Green Version]
- Jérôme, C.; Lecomte, P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Deliv. Rev. 2008, 60, 1056–1076. [Google Scholar] [CrossRef]
- Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem. Rev. 2004, 104, 6147–6176. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.U.; Kim, H.C.; Kim, J.W.; Kim, J. Swelling Behavior of Polyacrylamide-Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and pH Effects. Materials 2019, 12, 2080. [Google Scholar] [CrossRef] [Green Version]
- Atifi, S.; Su, S.; Hamad Wadood, Y. Mechanically tunable nanocomposite hydrogels based on functionalized cellulose nanocrystals. Nord. Pulp Pap. Res. J. 2014, 29, 95. [Google Scholar] [CrossRef]
- Spagnol, C.; Rodrigues, F.H.A.; Neto, A.G.V.C.; Pereira, A.G.B.; Fajardo, A.R.; Radovanovic, E.; Rubira, A.F.; Muniz, E.C. Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur. Polym. J. 2012, 48, 454–463. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Pathak, V.; Soni, B.; Mohan, Y.M. CNWs loaded poly(SA) hydrogels: Effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym. 2014, 106, 351–358. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Pathak, V.; Chand, N.; Soni, B. Cellulose Nano Whiskers (CNWs) Loaded-Poly(sodium acrylate) Hydrogels. Part-I. Effect of Low Concentration of CNWs on Water Uptake. J. Macromol. Sci. Part A Pure Appl. Chem. 2013, 50, 466–477. [Google Scholar] [CrossRef]
- Spagnol, C.; Rodrigues, F.H.A.; Pereira, A.G.B.; Fajardo, A.R.; Rubira, A.F.; Muniz, E.C. Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 2012, 19, 1225–1237. [Google Scholar] [CrossRef]
- Carlmark, A.; Larsson, E.; Malmström, E.; Boujemaoui, A. Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Adv. 2015, 5. [Google Scholar]
- Yang, J.; Zhao, J.-J.; Zhang, X.-M. Modification of cellulose nanocrystal-reinforced composite hydrogels: Effects of co-crosslinked and drying treatment. Cellulose 2014, 21, 3487–3496. [Google Scholar] [CrossRef]
- Wei, J.; Chen, Y.; Liu, H.; Du, C.; Yu, H.; Zhou, Z. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Carbohydr. Polym. 2016, 147, 201–207. [Google Scholar] [CrossRef]
- Al-Sabah, A.; Burnell, S.E.A.; Simoes, I.N.; Jessop, Z.; Badiei, N.; Blain, E.; Whitaker, I.S. Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydr. Polym. 2019, 212, 242–251. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, X.; Han, J.; Yu, L.; Chen, J.; Wu, Q.; Jiang, J. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydr. Polym. 2019, 206, 289–301. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Wu, W.; Jing, Y.; Dai, H.; Fang, G. Nanocellulose/Poly(2-(dimethylamino)ethyl methacrylate) Interpenetrating polymer network hydrogels for removal of Pb(II) and Cu(II) ions. Colloids Surf. A 2018, 538, 474–480. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, Z.; Feng, C.; Mayes, E.; Yang, J. Nanocellulose reinforced P(AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility. Compos. Part A 2018, 112, 395–404. [Google Scholar] [CrossRef]
- Nugent, M.J.D.; Higginbotham, C.L. Preparation of a novel freeze thawed poly(vinyl alcohol) composite hydrogel for drug delivery applications. Eur. J. Pharm. Biopharm. 2007, 67, 377–386. [Google Scholar] [CrossRef]
- Timofejeva, A.; D’Este, M.; Loca, D. Calcium phosphate/polyvinyl alcohol composite hydrogels: A review on the freeze-thawing synthesis approach and applications in regenerative medicine. Eur. Polym. J. 2017, 95, 547–565. [Google Scholar] [CrossRef]
- Guan, Y.; Qi, X.-M.; Zhang, B.; Chen, G.-G.; Peng, F.; Sun, R.-C. Physically Crosslinked Composite Hydrogels of Hemicelluloses with Poly(vinyl alcohol phosphate) and Chitin Nanowhiskers. BioResources 2015, 10, 1378–1393. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.-L. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J. Mater. Chem. A 2014, 2, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xu, W.; Liu, W.; Zeng, G. Responsiveness, swelling, and mechanical properties of PNIPA nanocomposite hydrogels reinforced by nanocellulose. J. Mater. Res. 2015, 30, 1797–1807. [Google Scholar] [CrossRef]
- Holloway, J.L.; Lowman, A.M.; Palmese, G.R. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 2013, 9, 826–833. [Google Scholar] [CrossRef]
- Gupta, S.; Goswami, S.; Sinha, A. A combined effect of freeze--thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed. Mater. 2012, 7, 015006. [Google Scholar] [CrossRef]
- Nugent, M.J.; Hanley, A.; Tomkins, P.T.; Higginbotham, C.L. Investigation of a novel freeze-thaw process for the production of drug delivery hydrogels. J. Mater. Sci. Mater. Med. 2005, 16, 1149–1158. [Google Scholar] [CrossRef]
- Chee, B.S.; Goetten de Lima, G.; Devine, D.M.; Nugent, M.J.D. Investigation of the effects of orientation on freeze/thawed Polyvinyl alcohol hydrogel properties. Mater. Today Commun. 2018, 17, 82–93. [Google Scholar] [CrossRef]
- Wahab, A.H.A.; Saad, A.P.M.; Harun, M.N.; Syahrom, A.; Ramlee, M.H.; Sulong, M.A.; Kadir, M.R.A. Developing functionally graded PVA hydrogel using simple freeze-thaw method for artificial glenoid labrum. J. Mech. Behav. Biomed. Mater. 2019, 91, 406–415. [Google Scholar] [CrossRef]
- Butylina, S.; Geng, S.; Oksman, K. Properties of as-prepared and freeze-dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique. Eur. Polym. J. 2016, 81, 386–396. [Google Scholar] [CrossRef]
- Velasco-Hogan, A.; Xu, J.; Meyers, M.A. Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures. Adv. Mater. 2018, 30, 1800940. [Google Scholar] [CrossRef]
- Gatenholm, P.; Martinez, H.; Karabulut, E.; Amoroso, M.; Kölby, L.; Markstedt, K.; Gatenholm, E.; Henriksson, I. Development of Nanocellulose-Based Bioinks for 3D Bioprinting of Soft Tissue. 3D Print. Biofabr. 2016, 1–23. [Google Scholar]
- Liu, S.; Chen, X.; Zhang, Y. Chapter 14—Hydrogels and hydrogel composites for 3D and 4D printing applications. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K.K., Deshmukh, K., Almaadeed, M.A., Eds.; Elsevier: Oxford, UK, 2020; pp. 427–465. [Google Scholar]
- Jang, T.-S.; Jung, H.-D.; Pan, H.; Tun, H.; Chen, S.; Song, J. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int. J. Bioprint. 2018, 4. [Google Scholar] [CrossRef]
- Vieira, S.; da Silva, M.A.; Silva-Correia, J.; Oliveira, J.M.; Reis, R.L. Natural-Based Hydrogels: From Processing to Applications. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons: Philadelphia, PA, USA, 2017; pp. 1–27. [Google Scholar]
- Nakamura, M.; Kobayashi, A.; Takagi, F.; Watanabe, A.; Hiruma, Y.; Ohuchi, K.; Iwasaki, Y.; Horie, M.; Morita, I.; Takatani, S. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005, 11, 1658–1666. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.K.; Leong, K.F. 3D Printing and Additive Manufacturing; World Scientific Publishing Company: Toh Tuck Link, Singapore, 2014. [Google Scholar]
- Melchels, F.; Feijen, J.; Grijpma, D. A Review on Stereolithography and its Applications in Biomedical Engineering. Biomaterials 2010, 31, 6121–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Fang, R.; Rong, Q.; Liu, M. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures. Adv. Mater. 2017, 29, 1703045. [Google Scholar] [CrossRef]
- Markstedt, K.; Mantas, A.; Tournier, I.; Martinez Avila, H.; Hagg, D.; Gatenholm, P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 2015, 16, 1489–1496. [Google Scholar] [CrossRef]
- Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsä-Kortelainen, S.; Pinomaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula, P.; Hytönen, V.P. 3D-Printable Bioactivated Nanocellulose–Alginate Hydrogels. ACS Appl. Mater. Interfacess 2017, 9, 21959–21970. [Google Scholar] [CrossRef] [Green Version]
- Athukorala, S.; Balu, R.; Dutta, N.; Roy Choudhury, N. 3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review. Polymers 2019, 11, 898. [Google Scholar] [CrossRef] [Green Version]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar]
- Elbarbary, A.M.; El-Rehim, H.A.A.; El-Sawy, N.M.; Hegazy, E.-S.A.; Soliman, E.-S.A. Radiation induced crosslinking of polyacrylamide incorporated low molecular weights natural polymers for possible use in the agricultural applications. Carbohydr. Polym. 2017, 176, 19–28. [Google Scholar] [CrossRef]
- Fu, L.-H.; Qi, C.; Ma, M.-G.; Wan, P. Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B 2019, 7, 1541–1562. [Google Scholar] [CrossRef]
- Lu, P.; Liu, R.; Liu, X.; Wu, M. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions. Nanomaterials 2018, 8, 800. [Google Scholar] [CrossRef] [Green Version]
- Nafu, Y.; Foba-Tendo, J.; Njeugna, E.; Oliver, G.; Cooke, K. Extraction and Characterization of Fibres from the Stalk and Spikelets of Empty Fruit Bunch. Int. J. Appl. Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.Y.; Mohammed, M.A.P.; Samsu Baharuddin, A. Characterisation of microcrystalline cellulose from oil palm fibres for food applications. Carbohydr. Polym. 2016, 148, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Salleh, K.M.; Zakaria, S.; Sajab, M.S.; Gan, S.; Chia, C.H.; Jaafar, S.N.S.; Amran, U.A. Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. Int. J. Biol. Macromol. 2018, 118, 1422–1430. [Google Scholar] [CrossRef]
- Gan, S.; Zakaria, S.; Chia, C.H.; Kaco, H. Effect of graphene oxide on thermal stability of aerogel bio-nanocomposite from cellulose-based waste biomass. Cellulose 2018, 25, 5099–5112. [Google Scholar] [CrossRef]
- Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 2019, 267, 47–61. [Google Scholar] [CrossRef]
- De Marco, I.; Miranda, S.; Riemma, S.; Iannone, R. LCA of starch aerogels for biomedical applications. Chem. Eng. Trans. 2016, 49, 319–324. [Google Scholar]
- Nascimento, D.M.; Nunes, Y.L.; Figueirêdo, M.C.B.; de Azeredo, H.M.C.; Aouada, F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A. Nanocellulose nanocomposite hydrogels: Technological and environmental issues. Green Chem. 2018, 20, 2428–2448. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Heo, S.; Foo, M.; Chew, I.M.; Yoo, C. An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Sci. Total Environ. 2019, 650, 1309–1326. [Google Scholar] [CrossRef]
3D Printing System | Inkjet Printer Based-3D Printing Systems | Nozzle Based-3D Printing Systems | Laser Based-3D Printing Systems |
---|---|---|---|
Schematic Representation | | | |
Material Viscosities | 30−(6 × 107) mPa/s | 3.5–12 mPa/s | 1–300 mPa/s |
Gelation Method | Chemical Photo-cross-linking Shear Thinning Temperature | Chemical Photo-cross-linking | Chemical Photo-cross-linking |
Preparation Time | Low to Medium | Low | Medium to High |
Print Speed | Slow (10–50 µm/s) | Fast (1–10,000 droplet/s) | Medium-fast (200–1600 mm/s) |
Resolution | 5 µm to millimeters wide | <1 pL to >300 pL 50 µm wide | Microscale Resolution |
Cell Viability | 40–80% | >85% | >95% |
Cell Density | High, cell spheroids | Low, <106 cells/mL | Medium, 108 cells/mL |
Printer Cost | Medium | Low | High |
Materials | Potential Applications | References |
---|---|---|
Microcrystalline cellulose (MCC) extracted from OPEFB, stalks and spikelet | Spikelet MCC—biocomposite Stalk MCC—food and pharmaceutical products | [133] |
OPEFB cellulose + NaOH/urea solvent + sodium carboxymethylcellulose (NaCMC) | Tissue engineering and medium for controlled/slow release fertilizer | [134] |
OPEFB cellulose + NaOH/urea solvent + NaCMC | Alternative medium for constant water supply for plants | [24] |
OPEFB + graphene oxide (GO) | Thermal insulating | [135] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padzil, F.N.M.; Lee, S.H.; Ainun, Z.M.A.; Lee, C.H.; Abdullah, L.C. Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. Materials 2020, 13, 1245. https://doi.org/10.3390/ma13051245
Padzil FNM, Lee SH, Ainun ZMA, Lee CH, Abdullah LC. Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. Materials. 2020; 13(5):1245. https://doi.org/10.3390/ma13051245
Chicago/Turabian StylePadzil, Farah Nadia Mohammad, Seng Hua Lee, Zuriyati Mohamed Asa’ari Ainun, Ching Hao Lee, and Luqman Chuah Abdullah. 2020. "Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review" Materials 13, no. 5: 1245. https://doi.org/10.3390/ma13051245
APA StylePadzil, F. N. M., Lee, S. H., Ainun, Z. M. A., Lee, C. H., & Abdullah, L. C. (2020). Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. Materials, 13(5), 1245. https://doi.org/10.3390/ma13051245