Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions
Abstract
:1. Introduction
2. Chemical Reaction Kinetics Model
2.1. Zr-Clad Hydrogen Chemistry
2.2. Diffusion Model of Hydrogen in ZrO2
- The first term is standard Fickian diffusion in the presence of a concentration gradient.
- The second term is the so-called thermo-migration contribution, which depends on the temperature gradient and where is the activation energy for diffusion. The convention is for interstitial solutes to move in the direction opposing the gradient, i.e., a ‘negative’ drift contribution in the equation.
- The third term represents electro-migration, where q is the charge of the diffusing species (+1 for protons), and is the electrical potential, which can be determined by solving Poisson’s equation:
2.3. Stochastic Cluster Dynamics Model with Spatial Resolution
- (i)
- The only mobile species considered are hydrogen atoms.
- (ii)
- The source term only applies to element 0 (oxide/metal boundary) and is calculated from the hydrogen arrival flux calculated from the model in Section 2.2.
- (iii)
- The only processes considered in the metal are:
- (a)
- H diffusion
- (b)
- Immobilization of H atoms through formation of ZrH molecules (equivalent to nucleation of hydride platelets).
- (c)
- Growth of ZrH clusters.
- (d)
- Thermal dissolution of ZrH clusters.
2.3.1. H Atom Diffusion
2.3.2. Nucleation of ZrH Hydride
2.3.3. Growth of ZrH Hydride
2.3.4. Dissolution of ZrH Hydride
2.3.5. Metal/Oxide Interface Motion
2.4. Parameterization, Physical Dimensions, and Boundary Conditions
3. Results
4. Discussion
5. Conclusions
- We have developed a spatially-resolved kinetic model of hydrogen transport/accumulation in Zr-metal clad. The model includes state-of-the-art hydride energetics data from atomistic calculations and is formulated as a stochastic version of the cluster dynamics method. Notably, boundary conditions are dynamically updated in time during the simulations, by accounting for oxide/metal interface motion due to the time-dependent growth of the oxide scale.
- In doing so, our model is consistent with the oxidation in the clad, as well as with the equilibrium thermodynamics of the Zr-H system.
- As most cluster dynamics models based on mean-field rate theory, our model does not capture the orientation dependence of elongated hydride platelets observed experimentally, and microstructural information such as grain sizes and dislocation densities is included only in an effective way. As such, our results are representative of the ‘average’ structure along the depth direction.
- Our results show that high concentrations of small hydride nuclei form across the entire metal clad. This results in a very fine microstructure that sets the stage for the next kinetic phase, likely to be one of ripening and coarsening.
- Gaps in our knowledge identified in this work include, among others: (i) how to model the H dissolved from hydrides swept by the growing oxide layer, (ii) how to reconcile existing H-atom diffusion energies with almost cross-clad uniform hydride distributions, and (iii) the reasons for the acicular (or capsular) growth of the precipitates are still not clear and, while such geometries can be adopted in the models, a physical approach that yields these geometric features is still lacking.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scully, J.C. The Fundamentals of Corrosion, 2nd ed.; Pergamon: Oxford, UK, 1978. [Google Scholar]
- North, N.; MacLeod, I.D.; Pearson, C. Corrosion of Metals; Butterworth-Heinemann: Oxford, UK, 1987; pp. 68–98. [Google Scholar]
- Young, D.J. High Temperature Oxidation and Corrosion of Metals; Elsevier: Amsterdam, The Netherlands, 2008; Volume 1. [Google Scholar]
- Comstock, R.; Motta, A.T. Zirconium in the Nuclear Industry: 18th International Symposium; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Clayton, J.C. Out-of-pile nickel alloy-induced accelerated hydriding of zircaloy fasteners. In Zirconium in the Nuclear Industry; ASTM International: West Conshohocken, PA, USA, 1984. [Google Scholar]
- Jacques, P.; Lefebvre, F.; Lemaignan, C. Deformation–corrosion interactions for Zr alloys during I-SCC crack initiation: part I: chemical contributions. J. Nucl. Mater. 1999, 264, 239–248. [Google Scholar] [CrossRef]
- Sabol, G.P.; Moan, G.D. Zirconium in the Nuclear Industry: Twelfth International Symposium; ASTM: West Conshohocken, PA, USA, 2000. [Google Scholar]
- Féron, D. Nuclear Corrosion Science and Engineering, 1st ed.; Woodhead Publishing: Sawston, UK, 2012. [Google Scholar]
- Cattant, F.; Crusset, D.; Féron, D. Corrosion issues in nuclear industry today. Mater. Today 2008, 11, 32–37. [Google Scholar] [CrossRef]
- Allen, T.; Konings, R.; Motta, A. 5.03 corrosion of zirconium alloys. Compr. Nucl. Mater. 2012, 5, 49–68. [Google Scholar]
- Preuss, M. Zirconium cladding-the long way towards a mechanistic understanding of processing and performance. In Proceedings of the Second International Conference on Advances in Nuclear Materials: Abstract Booklet and Souvenir, Mumbai, India, 9–11 February 2011. [Google Scholar]
- Hillner, E. Corrosion of zirconium-base alloys? An overview. In Zirconium in the Nuclear Industry; ASTM International: West Conshohocken, PA, USA, 1977. [Google Scholar]
- Zaimovskii, A. Zirconium alloys in nuclear power. At. Energy 1978, 45, 1165–1168. [Google Scholar] [CrossRef]
- Cox, B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J. Nucl. Mater. 2005, 336, 331–368. [Google Scholar] [CrossRef]
- Causey, R.A.; Cowgill, D.F.; Nilson, R.H. Review of the Oxidation Rate of Zirconium Alloys; Technical Report SAND2005-6006; Sandia National Laboratories: Albuquerque, NM, USA, 2005.
- Motta, A.T.; Yilmazbayhan, A.; da Silva, M.J.G.; Comstock, R.J.; Was, G.S.; Busby, J.T.; Gartner, E.; Peng, Q.; Jeong, Y.H.; Park, J.Y. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities. J. Nucl. Mater. 2007, 371, 61–75. [Google Scholar] [CrossRef]
- Bossis, P.; Pecheur, D.; Hanifi, K.; Thomazet, J.; Blat, M. Comparison of the high burn-up corrosion on M5 and low tin Zircaloy-4. In 14th International Symposium on Zirconium in the Nuclear Industry; ASTM Special Technical Publication: West Conshohocken, PA, USA, 2006; Volume 3, pp. 494–525. [Google Scholar]
- Motta, A.T.; Capolungo, L.; Chen, L.Q.; Cinbiz, M.N.; Daymond, M.R.; Koss, D.A.; Lacroix, E.; Pastore, G.; Simon, P.C.A.; Tonks, M.R.; et al. Hydrogen in zirconium alloys: A review. J. Nucl. Mater. 2019, 518, 440–460. [Google Scholar] [CrossRef] [Green Version]
- McRae, G.; Coleman, C.; Leitch, B. The first step for delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 2010, 396, 130–143. [Google Scholar] [CrossRef]
- Zieliński, A.; Sobieszczyk, S. Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Int. J. Hydrog. Energy 2011, 36, 8619–8629. [Google Scholar] [CrossRef]
- Zuzek, E.; Abriata, J.; San-Martin, A.; Manchester, F. The H-Zr (hydrogen-zirconium) system. Bull. Alloy Phase Diagr. 1990, 11, 385–395. [Google Scholar] [CrossRef]
- Dupin, N.; Ansara, I.; Servant, C.; Toffolon, C.; Lemaignan, C.; Brachet, J. A thermodynamic database for zirconium alloys. J. Nucl. Mater. 1999, 275, 287–295. [Google Scholar] [CrossRef]
- Steinbrück, M. Hydrogen absorption by zirconium alloys at high temperatures. J. Nucl. Mater. 2004, 334, 58–64. [Google Scholar]
- Grosse, M.; Steinbrueck, M.; Lehmann, E.; Vontobel, P. Kinetics of Hydrogen Absorption and Release in Zirconium Alloys During Steam Oxidation. Oxid. Met. 2008, 70, 149–162. [Google Scholar] [CrossRef]
- Gulbransen, E.A.; Andrew, K.F. Diffusion of hydrogen and deuterium in high purity zirconium. J. Electrochem. Soc. 1954, 101, 560–566. [Google Scholar] [CrossRef]
- Root, J.; Small, W.; Khatamian, D.; Woo, O. Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5Nb. Acta Mater. 2003, 51, 2041–2053. [Google Scholar] [CrossRef]
- Zhao, Z.; Blat-Yrieix, M.; Morniroli, J.; Legris, A.; Thuinet, L.; Kihn, Y.; Ambard, A.; Legras, L. Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation. In Zirconium in the Nuclear Industry: 15th International Symposium; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Ackland, G. Embrittlement and the bistable crystal structure of zirconium hydride. Phys. Rev. Lett. 1998, 80, 2233. [Google Scholar] [CrossRef]
- Olsson, P.; Massih, A.; Blomqvist, J.; Holston, A.M.A.; Bjerkén, C. Ab initio thermodynamics of zirconium hydrides and deuterides. Comput. Mater. Sci. 2014, 86, 211–222. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, R.; Shu, G.; Wu, P.; Xiao, H. First-principles study of different polymorphs of crystalline zirconium hydride. J. Phys. Chem. C 2010, 114, 22361–22368. [Google Scholar] [CrossRef]
- Chernov, I.I.; Staltsov, M.S.; Kalin, B.A.; Guseva, L.Y. Some problems of hydrogen in reactor structural materials: A review. Inorg. Mater. Appl. Res. 2017, 8, 643–650. [Google Scholar] [CrossRef]
- Coleman, C.; Hardie, D. The hydrogen embrittlement of α-zirconium? A review. J. Less Common Met. 1966, 11, 168–185. [Google Scholar] [CrossRef]
- Tummala, H.; Capolungo, L.; Tome, C.N. Quantifying the Stress Fields Due to a Delta-Hydride Precipitate in Alpha-Zr Matrix; Technical Report; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2017.
- Bloch, J. The temperature-dependent changes of the kinetics and morphology of hydride formation in zirconium. J. Alloys Compd. 1995, 216, 187–195. [Google Scholar] [CrossRef]
- Motta, A.T.; Chen, L.Q. Hydride formation in zirconium alloys. JOM 2012, 64, 1403–1408. [Google Scholar] [CrossRef]
- Blackmur, M.S.; Robson, J.; Preuss, M.; Zanellato, O.; Cernik, R.; Shi, S.Q.; Ribeiro, F.; Andrieux, J. Zirconium hydride precipitation kinetics in Zircaloy-4 observed with synchrotron X-ray diffraction. J. Nucl. Mater. 2015, 464, 160–169. [Google Scholar] [CrossRef]
- Cinbiz, M.N.; Koss, D.A.; Motta, A.T.; Park, J.S.; Almer, J.D. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling. J. Nucl. Mater. 2017, 487, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Ells, C. Hydride precipitates in zirconium alloys (A review). J. Nucl. Mater. 1968, 28, 129–151. [Google Scholar] [CrossRef]
- Carpenter, G. The dilatational misfit of zirconium hydrides precipitated in zirconium. J. Nucl. Mater. 1973, 48, 264–266. [Google Scholar] [CrossRef]
- Singh, R.N.; Ståhle, P.; Massih, A.R.; Shmakov, A. Temperature dependence of misfit strains of δ-hydrides of zirconium. J. Alloys Comp. 2007, 436, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Barrow, A.; Korinek, A.; Daymond, M. Evaluating zirconium–zirconium hydride interfacial strains by nano-beam electron diffraction. J. Nucl. Mater. 2013, 432, 366–370. [Google Scholar] [CrossRef]
- Lumley, S.; Grimes, R.; Murphy, S.; Burr, P.; Chroneos, A.; Chard-Tuckey, P.; Wenman, M. The thermodynamics of hydride precipitation: The importance of entropy, enthalpy and disorder. Acta Mater. 2014, 79, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.S. An assessment of delayed hydride cracking in zirconium alloy cladding tubes under stress transients. Int. Mater. Rev. 2013, 58, 349–373. [Google Scholar] [CrossRef]
- Markelov, V.A. Delayed hydride cracking of zirconium alloys: Appearance conditions and basic laws. Russ. Metall. (Met.) 2011, 2011, 326. [Google Scholar] [CrossRef]
- Lee, H.; min Kim, K.; Kim, J.S.; Kim, Y.S. Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition. Nucl. Eng. Technol. 2019. [Google Scholar] [CrossRef]
- Likhanskii, V.; Evdokimov, I. Review of theoretical conceptions on regimes of oxidation and hydrogen pickup in Zr-alloys. In Proceedings of the International Conference on WWER Fuel Performance, Modelling and Experimental Eupport, Albena, Bulgaria, 17–21 September 2007. [Google Scholar]
- Steinbrück, M.; Birchley, J.; Goryachev, A.; Grosse, M.; Haste, T.; Hozer, Z.; Kisselev, A.; Nalivaev, V.; Semishkin, V.; Sepold, L.; et al. Status of studies on high-temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. In Proceedings of the 3rd European Review Meeting on Severe Accident Research (ERMSAR-2008), Nesseber, Bulgaria, 23–25 September 2008. [Google Scholar]
- Lindgren, M.; Panas, I. On the fate of hydrogen during zirconium oxidation by water: effect of oxygen dissolution in [small alpha]-Zr. RSC Adv. 2014, 4, 11050–11058. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Wang, L.; Lu, S. Influence of oxide layer on hydrogen desorption from zirconium hydride. J. Alloys Comp. 2009, 469, 142–145. [Google Scholar] [CrossRef]
- Couet, A.; Motta, A.T.; Ambard, A.; Comstock, R. Oxide electronic conductivity and hydrogen pickup fraction in Zr alloys. In Proceedings of the 2014 Annual Meeting on Transactions of the American Nuclear Society and Embedded Topical Meeting: Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, NSFM, Reno, NV, USA, 15–19 June 2014; pp. 845–848. [Google Scholar]
- Puls, M.P. Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 2009, 393, 350–367. [Google Scholar] [CrossRef]
- Marino, G. Hydrogen supercharging in Zircaloy. Mater. Sci. Eng. 1971, 7, 335–341. [Google Scholar] [CrossRef]
- Tikare, V. Simulation of Hydride Reorientation in Zr-Based Claddings During Dry Storage; Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2013.
- Courty, O.; Motta, A.T.; Hales, J.D. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding. J. Nucl. Mater. 2014, 452, 311–320. [Google Scholar] [CrossRef]
- Aryanfar, A.; Thomas, J.; Van der Ven, A.; Xu, D.; Youssef, M.; Yang, J.; Yildiz, B.; Marian, J. Integrated computational modeling of water side corrosion in zirconium metal clad under nominal LWR operating conditions. JOM 2016, 68, 2900–2911. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Xiao, H. Cluster Dynamics Model for the Hydride Precipitation Kinetics in Zirconium Cladding. In Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors; Jackson, J.H., Paraventi, D., Wright, M., Eds.; Springer International Publishing: Cham, Switzerlands, 2019; pp. 1759–1768. [Google Scholar]
- Ma, X.; Shi, S.; Woo, C.; Chen, L. The phase field model for hydrogen diffusion and γ-hydride precipitation in zirconium under non-uniformly applied stress. Mech. Mater. 2006, 38, 3–10. [Google Scholar] [CrossRef]
- Guo, X.; Shi, S.; Zhang, Q.; Ma, X. An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: Smooth specimen. J. Nucl. Mater. 2008, 378, 110–119. [Google Scholar] [CrossRef]
- Aryanfar, A.; Goddard, W., III; Marian, J. Constriction Percolation Model for Coupled Diffusion-Reaction Corrosion of Zirconium in PWR. Corros. Sci. 2019, 158, 108058. [Google Scholar] [CrossRef] [Green Version]
- Une, K. Kinetics of reaction of Zirconium alloy with hydrogen. J. Less Common Met. 1978, 57, 93–101. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, M.J.; Szlufarska, I.; Morgan, D. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding. J. Appl. Phys. 2017, 121, 135101. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.H.; Hong, H.S.; Lee, K.S. Measurements of hydrogen permeation and absorption in zirconium oxide scales. J. Nucl. Mater. 2003, 312, 134–140. [Google Scholar] [CrossRef]
- Geelhood, K.; Beyer, C. Hydrogen Pickup Models for Zircaloy-2, Zircaloy-4, M5TM, and ZIRLTM. In Proceedings of the 2011 Water Reactor Fuel Performance Meeting, Chengdu, China, 11–14 September 2011. [Google Scholar]
- Couet, A.; Motta, A.T.; Comstock, R.J. Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics. J. Nucl. Mater. 2014, 451, 1–13. [Google Scholar] [CrossRef]
- Chernyayeva, T.P.; Ostapov, A. Hydrogen in zirconium part 1. Probl. At. Sci. Technol. 2013, 87, 16–32. [Google Scholar]
- Hu, J.; Liu, J.; Lozano-Perez, S.; Grovenor, C.R.; Christensen, M.; Wolf, W.; Wimmer, E.; Mader, E.V. Hydrogen pickup during oxidation in aqueous environments: The role of nano-pores and nano-pipes in zirconium oxide films. Acta Mater. 2019, 180, 105–115. [Google Scholar] [CrossRef]
- Heuser, B.J.; Lin, J.L.; Do, C.; He, L. Small-angle neutron scattering measurements of δ-phase deuteride (hydride) precipitates in Zircaloy 4. J. Appl. Crystallogr. 2018, 51, 768–780. [Google Scholar] [CrossRef]
- Zhao, Z.; Morniroli, J.P.; Legris, A.; Ambard, A.; Khin, Y.; Legras, L.; Blat-Yrieix, M. Identification and characterization of a new zirconium hydride. J. Microsc. 2008, 232, 410–421. [Google Scholar] [CrossRef]
- Reyes, M.; Aryanfar, A.; Baek, S.W.; Marian, J. Multilayer interface tracking model of zirconium clad oxidation. J. Nucl. Mater. 2018, 509, 550–565. [Google Scholar] [CrossRef]
- Garzarolli, F.; Seidel, H.; Tricot, R.; Gros, J. Oxide growth mechanism on zirconium alloys. In Zirconium in the Nuclear Industry: Ninth International Symposium; ASTM International: West Conshohocken, PA, USA, 1991. [Google Scholar]
- Billot, P.; Cox, B.; Ishigure, K.; Johnson, A.; Lemaignan, C.; Nechaev, A.; Petrik, N.; Reznichenko, E.; Ritchie, I.G.; Sukhanov, G.I. Corrosion of Zirconium Alloys in Nuclear Power Plants; Technical Report IAEA-TECDOC-684; International Atomic Energy Agency: Vienna, Austria, 1993. [Google Scholar]
- Motta, A.T.; Couet, A.; Comstock, R.J. Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding. Ann. Rev. Mater. Res. 2015, 45, 311–343. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Whitney, E.D. Kinetics and mechanism of the transition of metastable tetragonal to monoclinic zirconia. Trans. Faraday Soc. 1965, 61, 1991–2000. [Google Scholar] [CrossRef]
- Couet, A.; Motta, A.T.; Ambard, A. The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. Parabolic oxidation of zirconium alloys. Corros. Sci. 2015, 100, 73–84. [Google Scholar] [CrossRef]
- Marian, J.; Bulatov, V.V. Stochastic cluster dynamics method for simulations of multispecies irradiation damage accumulation. J. Nucl. Mater. 2011, 415, 84–95. [Google Scholar] [CrossRef]
- Marian, J.; Hoang, T.L. Modeling fast neutron irradiation damage accumulation in tungsten. J. Nucl. Mater. 2012, 429, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Dunn, A.Y.; Capolungo, L.; Martinez, E.; Cherkaoui, M. Spatially resolved stochastic cluster dynamics for radiation damage evolution in nanostructured metals. J. Nucl. Mater. 2013, 443, 128–139. [Google Scholar] [CrossRef]
- Dunn, A.; Capolungo, L. Simulating radiation damage accumulation in α-Fe: a spatially resolved stochastic cluster dynamics approach. Comput. Mater. Sci. 2015, 102, 314–326. [Google Scholar] [CrossRef]
- Tupin, M.; Martin, F.; Bisor, C.; Verlet, R.; Bossis, P.; Chêne, J.; Jomard, F.; Berger, P.; Pascal, S.; Nuns, N. Hydrogen diffusion process in the oxides formed on zirconium alloys during corrosion in pressurized water reactor conditions. Corros. Sci. 2017, 116, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cox, B. Mechanisms of Hydrogen Absorption by Zirconium Alloys; Technical Report; Atomic Energy of Canada Ltd.: Laurentian Hills, ON, Canada, 1985. [Google Scholar]
- Khatamian, D.; Manchester, F. An ion beam study of hydrogen diffusion in oxides of Zr and Zr-Nb (2.5 wt%): I. Diffusion parameters for dense oxide. J. Nucl. Mater. 1989, 166, 300–306. [Google Scholar] [CrossRef]
- Kearns, J. Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 1972, 43, 330–338. [Google Scholar] [CrossRef]
- Sawatzky, A. The diffusion and solubility of hydrogen in the alpha phase of Zircaloy-2. J. Nucl. Mater. 1960, 2, 62–68. [Google Scholar] [CrossRef]
- Someno, M. Solubility and diffusion of hydrogen in zirconium. Nippon Kinzoku Gakkaishi Jpn. 1960, 24, 003131. [Google Scholar]
- Grosse, M.; Van Den Berg, M.; Goulet, C.; Kaestner, A. In-situ investigation of hydrogen diffusion in Zircaloy-4 by means of neutron radiography. J. Phys. Conf. Ser. 2012, 340, 012106. [Google Scholar] [CrossRef] [Green Version]
- Siripurapu, R.K.; Szpunar, B.; Szpunar, J.A. Molecular Dynamics Study of Hydrogen in α-Zirconium. Int. J. Nucl. Energy 2014, 2014. [Google Scholar] [CrossRef]
- Blomqvist, J.; Olofsson, J.; Alvarez, A.M.; Bjerkén, C. Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle. In Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors; Busby, J.T., Ilevbare, G., Andresen, P.L., Eds.; Springer International Publishing: Cham, Switzerlands, 2016; pp. 671–681. [Google Scholar]
- Miyake, M.; Uno, M.; Yamanaka, S. On the zirconium–oxygen–hydrogen ternary system. J. Nucl. Mater. 1999, 270, 233–241. [Google Scholar] [CrossRef]
- LaGrange, L.D.; Dykstra, L.; Dixon, J.M.; Merten, U. A Study of the Zirconium-Hydrogen and Zirconium-Hydrogen–Uranium Systems between 600 and 800∘. J. Phys. Chem. 1959, 63, 2035–2041. [Google Scholar] [CrossRef]
- Weekes, H.; Dye, D.; Proctor, J.; Smith, D.; Simionescu, C.; Prior, T.; Wenman, M. The Effect of Pressure on Hydrogen Solubility in Zircaloy-4. arXiv 2018, arXiv:1806.09657. [Google Scholar] [CrossRef] [Green Version]
- Northwood, D.; Kosasih, U. Hydrides and delayed hydrogen cracking in zirconium and its alloys. Int. Met. Rev. 1983, 28, 92–121. [Google Scholar] [CrossRef]
- Une, K.; Ishimoto, S. Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy. J. Nucl. Mater. 2003, 322, 66–72. [Google Scholar] [CrossRef]
- Zanellato, O.; Preuss, M.; Buffiere, J.Y.; Ribeiro, F.; Steuwer, A.; Desquines, J.; Andrieux, J.; Krebs, B. Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4. J. Nucl. Mater. 2012, 420, 537–547. [Google Scholar] [CrossRef]
- Domain, C.; Besson, R.; Legris, A. Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties. Acta Mater. 2002, 50, 3513–3526. [Google Scholar] [CrossRef]
- Nazarov, R.; Majevadia, J.S.; Patel, M.; Wenman, M.R.; Balint, D.S.; Neugebauer, J.; Sutton, A.P. First-principles calculation of the elastic dipole tensor of a point defect: Application to hydrogen in α-zirconium. Phys. Rev. B 2016, 94, 241112. [Google Scholar] [CrossRef] [Green Version]
- Fukai, Y. The Metal-Hydrogen System: Basic Bulk Properties; Springer Science & Business Media: Cham, Switzerlands, 2006; Volume 21. [Google Scholar]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 21, 2832–2838. [Google Scholar] [CrossRef] [PubMed]
- Blackmur, M.S.; Preuss, M.; Robson, J.D.; Zanellato, O.; Cernik, R.J.; Ribeiro, F.; Andrieux, J. Strain evolution during hydride precipitation in Zircaloy-4 observed with synchrotron X-ray diffraction. J. Nucl. Mater. 2016, 474, 45–61. [Google Scholar] [CrossRef]
- Weekes, H.; Jones, N.; Lindley, T.; Dye, D. Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction. J. Nucl. Mater. 2016, 478, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Giuliani, F.; Britton, T.B. Microstructure and formation mechanisms of δ-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction. Acta Mater. 2019, 169, 76–87. [Google Scholar] [CrossRef]
- Bair, J.; Zaeem, M.A.; Tonks, M. A review on hydride precipitation in zirconium alloys. J. Nucl. Mater. 2015, 466, 12–20. [Google Scholar] [CrossRef]
- Heo, T.W.; Colas, K.B.; Motta, A.T.; Chen, L.Q. A phase-field model for hydride formation in polycrystalline metals: Application to δ-hydride in zirconium alloys. Acta Mater. 2019, 181, 262–277. [Google Scholar] [CrossRef]
- Vizcaíno, P.; Santisteban, J.; Alvarez, M.V.; Banchik, A.; Almer, J. Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr2.5. J. Nucl. Mater. 2014, 447, 82–93. [Google Scholar]
- Tikare, V.; Weck, P.F.; Mitchell, J.A. Modeling of Hydride Precipitation and re-Orientation; Technical Report SAND2015-8260R; Sandia National Laboratories (SNL-NM): Albuquerque, NW, USA, 2015.
- Blat, M.; Noel, D. Detrimental role of hydrogen on the corrosion rate of zirconium alloys. In Zirconium in the Nuclear Industry: Eleventh International Symposium; ASTM International: West Conshohocken, PA, USA, 1996. [Google Scholar]
- Shinohara, Y.; Abe, H.; Iwai, T.; Sekimura, N.; Kido, T.; Yamamoto, H.; Taguchi, T. In situ TEM observation of growth process of zirconium hydride in Zircaloy-4 during hydrogen ion implantation. J. Nucl. Sci. Technol. 2009, 46, 564–571. [Google Scholar] [CrossRef]
- Krishna, K.M.; Sain, A.; Samajdar, I.; Dey, G.; Srivastava, D.; Neogy, S.; Tewari, R.; Banerjee, S. Resistance to hydride formation in zirconium: An emerging possibility. Acta Mater. 2006, 54, 4665–4675. [Google Scholar]
- Škarohlíd, J.; Ashcheulov, P.; Škoda, R.; Taylor, A.; Čtvrtlík, R.; Tomáštík, J.; Fendrych, F.; Kopeček, J.; Cháb, V.; Cichoň, S.; et al. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: Nuclear fuel durability enhancement. Sci. Rep. 2017, 7, 6469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, M.; Yang, M.; Yildiz, B. Doping in the Valley of Hydrogen Solubility: A Route to Designing Hydrogen-Resistant Zirconium Alloys. Phys. Rev. Appl. 2016, 5, 014008. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Symbol | Value | Source |
---|---|---|---|---|
Hydrogen diffusivity prefactor in Zr oxide | m·s | [80] | ||
Hydrogen migration energy in Zr oxide | eV | 0.41 | [80] | |
Hydrogen diffusivity prefactor in Zr metal | m·s | [83] | ||
Hydrogen migration energy in Zr metal | eV | 0.46 | [83] | |
-hydride formation energy | eV | 0.88 | [88] | |
H solution energy in Zr metal | eV | 0.66 | [97] |
Physical Constant | Symbol | Unit | Value | Source |
---|---|---|---|---|
Zr atomic density | m | - | ||
H-atom interaction radius | Å | 0.31 | [98] | |
Zr-atom interaction radius | Å | 1.75 | [98] | |
H-atom formation volume | nm per atom | [91] | ||
-hydride platelet thickness | d | nm | 0.28 | [37] |
[%] | [%] | T [K] | V | l [nm] | L [nm] | |
---|---|---|---|---|---|---|
0.15 | 1.6 | 59.5 | 660 | 100 | 900 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Reyes, M.; Shah, N.; Marian, J. Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions. Materials 2020, 13, 1088. https://doi.org/10.3390/ma13051088
Yu Q, Reyes M, Shah N, Marian J. Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions. Materials. 2020; 13(5):1088. https://doi.org/10.3390/ma13051088
Chicago/Turabian StyleYu, Qianran, Michael Reyes, Nachiket Shah, and Jaime Marian. 2020. "Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions" Materials 13, no. 5: 1088. https://doi.org/10.3390/ma13051088
APA StyleYu, Q., Reyes, M., Shah, N., & Marian, J. (2020). Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions. Materials, 13(5), 1088. https://doi.org/10.3390/ma13051088